Skip to main content
Log in

A weighted independent even factor algorithm

Mathematical Programming Submit manuscript

Abstract

An even factor in a digraph is a vertex-disjoint collection of directed cycles of even length and directed paths. An even factor is called independent if it satisfies a certain matroid constraint. The problem of finding an independent even factor of maximum size is a common generalization of the nonbipartite matching and matroid intersection problems. In this paper, we present a primal-dual algorithm for the weighted independent even factor problem in odd-cycle-symmetric weighted digraphs. Cunningham and Geelen have shown that this problem is solvable via valuated matroid intersection. Their method yields a combinatorial algorithm running in O(n 3 γn 6 m) time, where n and m are the number of vertices and edges, respectively, and γ is the time for an independence test. In contrast, combining the weighted even factor and independent even factor algorithms, our algorithm works more directly and runs in O(n 4 γ + n 5) time. The algorithm is fully combinatorial, and thus provides a new dual integrality theorem which commonly extends the total dual integrality theorems for matching and matroid intersection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouchet A., Cunningham W.H.: Delta-matroids, jump systems, and bisubmodular polyhedra. SIAM J. Discrete Math. 8, 17–32 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cunningham W.H.: Matching, matroids, and extensions. Math. Program. 91, 515–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cunningham W.H., Geelen J.F.: The optimal path-matching problem. Combinatorica 17, 315–337 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cunningham W.H., Marsh A.B. III: A primal algorithm for optimum matching. Math. Program. Study 8, 50–72 (1978)

    Article  MathSciNet  Google Scholar 

  5. Edmonds J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stand. Sect. B 69, 125–130 (1965)

    MathSciNet  MATH  Google Scholar 

  6. Edmonds J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edmonds J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  8. Edmonds J.: Matroid intersection. Ann. Discrete Math. 4, 39–49 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frank A., Szegő L.: Note on the path-matching formula. J. Graph Theory 41, 110–119 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harvey, N.J.A.: Algebraic structures and algorithms for matching and matroid problems. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 531–542 (2006)

  11. Iwata S., Takazawa K.: The independent even factor problem. SIAM J. Discrete Math. 22, 1411–1427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Király T., Makai M.: On polyhedra related to even factors. In: Bienstock, D., Nemhauser, G.L. (eds) Integer Programming and Combinatorial Optimization: Proceedings of the 10th International IPCO Conference, Lecture Notes on Computer Science 3064, pp. 416–430. Springer, Heidelberg (2004)

    Google Scholar 

  13. Kobayashi Y., Takazawa K.: Even factors, jump systems, and discrete convexity. J. Comb. Theory Ser. B 99, 139–161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lawler E.L.: Matroid intersection algorithms. Math. Program. 9, 31–56 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Murota K.: Valuated matroid intersection I: optimality criteria. SIAM J. Discrete Math. 9, 545–561 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Murota K.: Valuated matroid intersection II: algorithms. SIAM J. Discrete Math. 9, 562–576 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murota K.: M-convex functions on jump systems: a general framework for minsquare graph factor problem. SIAM J. Discrete Math. 20, 213–226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oxley J.G.: Matroid Theory. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  19. Pap, G.: A Constructive Approach to Matching and Its Generalizations. Ph.D. thesis, Eötvös Loránd University (2006)

  20. Pap G.: Combinatorial algorithms for matchings, even factors and square-free 2-factors. Math. Program. 110, 57–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pap G., Szegő L.: On the maximum even factor in weakly symmetric graphs. J. Comb. Theory Ser. B 91, 201–213 (2004)

    Article  MATH  Google Scholar 

  22. Spille B., Szegő L.: A Gallai-Edmonds-type structure theorem for path-matchings. J. Graph Theory 46, 93–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Spille B., Weismantel R.: A generalization of Edmonds’ matching and matroid intersection algorithms. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization: Proceedings of the 9th International IPCO Conference, Lecture Notes in Computer Science 2337, pp. 9–20. Springer, Heidelberg (2002)

    Google Scholar 

  24. Takazawa K.: A weighted even factor algorithm. Math. Program. 115, 223–237 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenjiro Takazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takazawa, K. A weighted independent even factor algorithm. Math. Program. 132, 261–276 (2012). https://doi.org/10.1007/s10107-010-0397-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0397-z

Keywords

Mathematics Subject Classification (2000)

Navigation