Skip to main content
Log in

Modeling disjunctive constraints with a logarithmic number of binary variables and constraints

Mathematical Programming Submit manuscript

Abstract

Many combinatorial constraints over continuous variables such as SOS1 and SOS2 constraints can be interpreted as disjunctive constraints that restrict the variables to lie in the union of a finite number of specially structured polyhedra. Known mixed integer binary formulations for these constraints have a number of binary variables and extra constraints linear in the number of polyhedra. We give sufficient conditions for constructing formulations for these constraints with a number of binary variables and extra constraints logarithmic in the number of polyhedra. Using these conditions we introduce mixed integer binary formulations for SOS1 and SOS2 constraints that have a number of binary variables and extra constraints logarithmic in the number of continuous variables. We also introduce the first mixed integer binary formulations for piecewise linear functions of one and two variables that use a number of binary variables and extra constraints logarithmic in the number of linear pieces of the functions. We prove that the new formulations for piecewise linear functions have favorable tightness properties and present computational results showing that they can significantly outperform other mixed integer binary formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Appleget, J.A., Wood, R.K.: Explicit-constraint branching for solving mixed-integer programs. In: Laguna, M., González, J.L. (eds.) Computing Tools for Modeling, Optimization, and Simulation: Interfaces in Computer Science and Operations Research, Operations Research Computer Science Interfaces Series, vol. 12, pp. 245–261. Kluwer, Dordrecht (2000)

  2. Balakrishnan A., Graves S.C.: A composite algorithm for a concave-cost network flow problem. Networks 19, 175–202 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balas E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balas E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6, 466–486 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balas E.: On the convex-hull of the union of certain polyhedra. Oper. Res. Lett. 7, 279–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 3–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balas E.: Projection, lifting and extended formulation in integer and combinatorial optimization. Ann. Oper. Res. 140, 125–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beale E.M.L., Tomlin J.A.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. In: Lawrence, J. (eds) OR 69: Proceedings of the Fifth International Conference on Operational Research, pp. 447–454. Tavistock Publications, London (1970)

    Google Scholar 

  9. Blair C.: 2 Rules for deducing valid inequalities for 0–1 problems. SIAM J. Appl. Math. 31, 614–617 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blair C.: Representation for multiple right-hand sides. Math. Program. 49, 1–5 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carnicer J.M., Floater M.S.: Piecewise linear interpolants to lagrange and hermite convex scattered data. Numer. Algorithms 13, 345–364 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christof, T., Loebel, A.: PORTA—POlyhedron Representation Transformation Algorithm, version 1.3. Available at http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/

  13. Coppersmith D., Lee J.: Parsimonious binary-encoding in integer programming. Discrete Optim. 2, 190–200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Croxton K.L., Gendron B., Magnanti T.L.: A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manage. Sci. 49, 1268–1273 (2003)

    Article  Google Scholar 

  15. Dantzig G.B.: Discrete-variable extremum problems. Oper. Res. 5, 266–277 (1957)

    Article  MathSciNet  Google Scholar 

  16. Dantzig G.B.: On the significance of solving linear-programming problems with some integer variables. Econometrica 28, 30–44 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dantzig G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  18. de Farias I.R. Jr., Johnson E.L., Nemhauser G.L.: Branch-and-cut for combinatorial optimization problems without auxiliary binary variables. Knowl. Eng. Rev. 16, 25–39 (2001)

    MATH  Google Scholar 

  19. Ibaraki T.: Integer programming formulation of combinatorial optimization problems. Discrete Math. 16, 39–52 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeroslow R.G.: Cutting plane theory: disjunctive methods. Ann. Discrete Math. 1, 293–330 (1977)

    Article  MathSciNet  Google Scholar 

  21. Jeroslow R.G.: Representability in mixed integer programming 1: characterization results. Discrete Appl. Math. 17, 223–243 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeroslow R.G.: A simplification for some disjunctive formulations. Eur. J. Oper. Res. 36, 116–121 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeroslow R.G.: Representability of functions. Discrete Appl. Math. 23, 125–137 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeroslow R.G., Lowe J.K.: Modeling with integer variables. Math. Program. Study 22, 167–184 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Jeroslow R.G., Lowe J.K.: Experimental results on the new techniques for integer programming formulations. J. Oper. Res. Soc. 36, 393–403 (1985)

    MATH  Google Scholar 

  26. Keha A.B., de Farias I.R., Nemhauser G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32, 44–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Keha A.B., de Farias I.R., Nemhauser G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54, 847–858 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee J.: All-different polytopes. J. Comb. Optim. 6, 335–352 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee J., Margot F.: On a binary-encoded ilp coloring formulation. INFORMS J. Comput. 19, 406–415 (2007)

    Article  MathSciNet  Google Scholar 

  30. Lee J., Wilson D.: Polyhedral methods for piecewise-linear functions I: the lambda method. Discrete Appl. Math. 108, 269–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lowe, J.K.: Modelling with Integer Variables. Ph.D. Thesis, Georgia Institute of Technology (1984)

  32. Magnanti T.L., Stratila D.: Separable concave optimization approximately equals piecewise linear optimization. In: Bienstock, D., Nemhauser, G.L. (eds) IPCO, Lecture Notes in Computer Science, vol. 3064, pp. 234–243. Springer, Heidelberg (2004)

    Google Scholar 

  33. Markowitz H.M., Manne A.S.: On the solution of discrete programming-problems. Econometrica 25, 84–110 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martin A., Moller M., Moritz S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105, 563–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Meyer R.R.: On the existence of optimal solutions to integer and mixed-integer programming problems. Math. Program. 7, 223–235 (1974)

    Article  MATH  Google Scholar 

  36. Meyer R.R.: Integer and mixed-integer programming models—general properties. J. Optim. Theory Appl. 16, 191–206 (1975)

    Article  MATH  Google Scholar 

  37. Meyer R.R.: Mixed integer minimization models for piecewise-linear functions of a single variable. Discrete Math. 16, 163–171 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meyer R.R.: A theoretical and computational comparison of equivalent mixed-integer formulations. Nav. Res. Logist. 28, 115–131 (1981)

    Article  MATH  Google Scholar 

  39. Padberg M.: Approximating separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. 27, 1–5 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sherali H.D.: On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions. Oper. Res. Lett. 28, 155–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sherali, H.D., Shetty, C.M.: Optimization with Disjunctive Constraints. Lecture Notes in Economics and Mathematical Systems, vol. 181. Springer, Heidelberg (1980)

  42. Shields, R.: Personal communication (2007)

  43. Todd M.J.: Union jack triangulations. In: Karamardian, S. (eds) Fixed Points: Algorithms and Applications, pp. 315–336. Academic Press, New York (1977)

    Google Scholar 

  44. Tomlin J.A.: A suggested extension of special ordered sets to non-separable non-convex programming problems. In: Hansen, P. (eds) Studies on Graphs and Discrete Programming, Annals of Discrete Mathematics, vol. 11, pp. 359–370. North Holland, Amsterdam (1981)

    Chapter  Google Scholar 

  45. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: Mixed-integer models for nonseparable piecewise linear optimization: unifying framework and extensions. Oper. Res. (to appear) (2009)

  46. Vielma J.P., Keha A.B., Nemhauser G.L.: Nonconvex, lower semicontinuous piecewise linear optimization. Discrete Optim. 5, 467–488 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vielma J.P., Nemhauser G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) IPCO, Lecture Notes in Computer Science, vol. 5035, pp. 199–213. Springer, Hiedelberg (2008)

    Google Scholar 

  48. Watters L.J.: Reduction of integer polynomial programming problems to zero-one linear programming problems. Oper. Res. 15, 1171–1174 (1967)

    Article  Google Scholar 

  49. Wilf., H.S.: Combinatorial algorithms—an update, CBMS-NSF regional conference series in applied mathematics, vol. 55. Society for Industrial and Applied Mathematics (1989)

  50. Wilson, D.: Polyhedral methods for piecewise-linear functions. Ph.D. Thesis, University of Kentucky (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Vielma.

Additional information

An extended abstract of this paper appeared in [47].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vielma, J.P., Nemhauser, G.L. Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128, 49–72 (2011). https://doi.org/10.1007/s10107-009-0295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0295-4

Mathematics Subject Classification (2000)

Navigation