Skip to main content

Advertisement

Log in

Chemical and morphological analysis of dentin irradiated by different high-power lasers: a systematic review

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Purpose

This systematic review provides an overview of the main chemical and morphological alterations generated on dentin by different high-power lasers’ irradiation.

Methods

The review was registered in PROSPERO (CRD42023394164) and PRISMA guidelines were followed. The search strategy was conducted on MEDLINE (PubMed), Embase (Elsevier), and Web of Science (Clarivate) databases. The eligibility criteria were established according to the PICOS strategy, focusing on in vitro and ex vivo studies that assessed the chemical and morphological changes in dentin using five high-power lasers: Nd:YAG (1064 nm), Er:YAG (2940 nm), Er, Cr:YSGG (2780 nm), diode (980 nm), and CO2 (10,600 nm). Publication range was from 2010 to 2022. Data was summarized in tables and risk of bias was assessed by QUIN tool.

Results

The search resulted in 2255 matches and 57 studies composed the sample. The methods most used to assess the outcomes were scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and Raman. The studies presented “medium” and “low” risk of bias. The laser prevalently identified was the Er:YAG laser, associated with dentin ablation, absence of smear layer, and exposed tubules. The Nd:YAG laser generated vitreous surface and thermal damage, such as carbonization and cracks. The other lasers caused an irregular surface and no adverse thermal effects. Regarding the chemical structure, only the Er,Cr:YSGG laser caused collagen matrix reduction. The effects found were more intense with higher dosimetry.

Conclusion

Evidence available indicates that the irradiation of dentin with high-power lasers are related to morphological outcomes favorable to adhesive restorative procedures, with minimal changes in collagen matrix and mineral content. However, those observations should be carried carefully by clinicians and more clinical trials regarding the association of high-power laser irradiation and restorative procedure longevity are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. He Z, Chen L, Hu X et al (2017) Mechanical properties and molecular structure analysis of subsurface dentin after Er:YAG laser irradiation. J Mech Behav Biomed Mater 74:274–282. https://doi.org/10.1016/j.jmbbm.2017.05.036

    Article  CAS  PubMed  Google Scholar 

  2. Nahas P, Zeinoun T, Namour M et al (2018) Effect of er:Yag laser energy densities on thermally affected dentin layer: morphological study. Laser Ther 27:91–97. https://doi.org/10.5978/ISLSM.18-OR-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trevelin LT, da Silva BTF, de Freitas PM, Matos AB (2019) Influence of Er:YAG laser pulse duration on the long-term stability of organic matrix and resin-dentin interface. Lasers Med Sci 34:1391–1399. https://doi.org/10.1007/s10103-019-02739-y

    Article  PubMed  Google Scholar 

  4. Belal MH, Yassin A (2014) A comparative evaluation of CO2 and erbium-doped yttrium aluminium garnet laser therapy in the management of dentin hypersensitivity and assessment of mineral content. J Periodontal Implant Sci 44:227–234. https://doi.org/10.5051/jpis.2014.44.5.227

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee JW, Park KH, Chung JH, Kim SJ (2011) Effects of laser-aided circumferential supracrestal fiberotomy on root surfaces. Angle Orthod 81:1021–1027. https://doi.org/10.2319/121710-727.1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Faria MIA, Souza-Gabriel AE, Alfredo E et al (2011) Apical microleakage and SEM analysis of dentin surface after 980 nm diode laser irradiation. Braz Dent J 22:382–387. https://doi.org/10.1590/s0103-64402011000500006

    Article  PubMed  Google Scholar 

  7. Babarasul DO, Faraj BM, Kareem FA (2021) Scanning electron microscope image analysis of bonding surfaces following removal of composite resin restoration using Er: YAG laser: in vitro study. Scanning 2021:1–7. https://doi.org/10.1155/2021/2396392

    Article  CAS  Google Scholar 

  8. Cardoso MV, Delmé KIM, Mine A et al (2010) Towards a better understanding of the adhesion mechanism of resin-modified glass-ionomers by bonding to differently prepared dentin. J Dent 38:921–929. https://doi.org/10.1016/j.jdent.2010.08.009

    Article  CAS  PubMed  Google Scholar 

  9. Vermelho PM, Freitas PM, Reis AF, Giannini M (2022) Influence of Er:YAG laser irradiation settings on dentin-adhesive interfacial ultramorphology and dentin bond strength. Microsc Res Tech 85:2943–2952. https://doi.org/10.1002/jemt.24144

    Article  CAS  PubMed  Google Scholar 

  10. Akin GE, Herguner-Siso S, Ozcan M et al (2012) Bond strengths of one-step self-etch adhesives to laser-irradiated and bur-cut dentin after water storage and thermocycling. Photomed Laser Surg 30:214–221. https://doi.org/10.1089/pho.2011.3170

    Article  CAS  PubMed  Google Scholar 

  11. Guven Y, Aktoren O (2015) Shear bond strength and ultrastructural interface analysis of different adhesive systems to Er:YAG laser-prepared dentin. Lasers Med Sci 30:769–778. https://doi.org/10.1007/s10103-013-1424-0

    Article  PubMed  Google Scholar 

  12. Sirin Karaarslan E, Yildiz E, Cebe MA et al (2012) Evaluation of micro-tensile bond strength of caries-affected human dentine after three different caries removal techniques. J Dent 40:793–801. https://doi.org/10.1016/j.jdent.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  13. Neto WR, Lepri CP, Romano JJF et al (2015) Chemical and morphological changes of primary teeth irradiated with Nd:YAG Laser: an ex vivo long-term analysis. Photomed Laser Surg 33:266–273. https://doi.org/10.1089/pho.2014.3876

    Article  CAS  Google Scholar 

  14. Bolortuya G, Ebihara A, Ichinose S et al (2011) Initial fibroblast attachment to Erbium: YAG laser-irradiated dentine. Int Endod J 44:1134–1144. https://doi.org/10.1111/j.1365-2591.2011.01934.x

    Article  CAS  PubMed  Google Scholar 

  15. Farmakis E-TR, Kozyrakis K, Khabbaz MG et al (2012) In vitro evaluation of dentin tubule occlusion by Denshield and Neodymium-doped yttrium-aluminum-garnet laser irradiation. J Endod 38:662–666. https://doi.org/10.1016/j.joen.2012.01.019

    Article  PubMed  Google Scholar 

  16. Ramos TM, Ramos-Oliveira TM, de Freitas PM et al (2015) Effects of Er:YAG and Er,Cr:YSGG laser irradiation on the adhesion to eroded dentin. Lasers Med Sci 30:17–26. https://doi.org/10.1007/s10103-013-1321-6

    Article  PubMed  Google Scholar 

  17. Lopes FC, Roperto R, Akkus A et al (2018) Evaluation of chemical and morphological changes in radicular dentin after different final surface treatments. Microsc Res Tech 81:973–979. https://doi.org/10.1002/jemt.23060

    Article  CAS  PubMed  Google Scholar 

  18. Aghayan S, Fallah S, Chiniforush N (2021) Comparative efficacy of diode, Nd:YAG and Er:YAG lasers accompanied by fluoride in dentinal tubule obstruction. J Lasers Med Sci 12. https://doi.org/10.34172/jlms.2021.63

  19. Al-Maliky MA, Mahmood AS, Al-Karadaghi TS et al (2014) The effects of CO2 laser with or without nanohydroxyapatite paste in the occlusion of dentinal tubules. Sci World J 2014. https://doi.org/10.1155/2014/798732

  20. Shahabi S, Chiniforush N, Juybanpoor N (2013) Morphological changes of human dentin after erbium-doped yttrium aluminum garnet (Er: YAG) and carbon dioxide (CO2) laser irradiation and acid-etch technique: an scanning electron microscopic (SEM) evaluation. J Lasers Med Sci 4:48–52

    PubMed  PubMed Central  Google Scholar 

  21. Elsahn NA, El-Damanhoury HM, Elkassas DW (2021) Influence of low-level laser modification and adhesive application mode on the bonding efficiency of universal adhesives to Er:YAG Laser-Ablated Dentin. J Lasers Med Sci 12:1–9. https://doi.org/10.34172/jlms.2021.07

    Article  Google Scholar 

  22. Zhuang H, Liang Y, Xiang S et al (2021) Dentinal tubule occlusion using er:Yag laser: an in vitro study. J Appl Oral Sci 29:1–10. https://doi.org/10.1590/1678-7757-2020-0266

    Article  CAS  Google Scholar 

  23. Deeb JG, Skrjanc L, Kanduti D et al (2021) Evaluation of Er:YAG and Er,Cr:YSGG laser irradiation for the debonding of prefabricated zirconia crowns. Adv Clin Exp Med 30:7–15. https://doi.org/10.17219/ACEM/127686

    Article  PubMed  Google Scholar 

  24. Moosavi H, Ghorbanzadeh S, Ahrari F (2016) Structural and morphological changes in human dentin after ablative and subablative Er:YAG laser irradiation. J Lasers Med Sci 7:86–91. https://doi.org/10.15171/jlms.2016.15

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li T, Zhang X, Shi H et al (2019) Er:YAG laser application in caries removal and cavity preparation in children: a meta-analysis. Lasers Med Sci 34:273–280. https://doi.org/10.1007/s10103-018-2582-x

    Article  PubMed  Google Scholar 

  26. Xiong Z, Tu S, Jiang L et al (2022) Effect of nanosecond- and microsecond-pulse Er,Cr:YSGG laser ablation on dentin shear bond strength of universal adhesives. Lasers Med Sci 37:3285–3290. https://doi.org/10.1007/s10103-022-03625-w

    Article  PubMed  Google Scholar 

  27. Topçuoğlu HS, Köseoğlu M (2015) Effect of Er:YAG and Nd:YAG lasers on the mineral content of root canal dentin. Lasers Med Sci 30:809–813. https://doi.org/10.1007/s10103-013-1438-7

    Article  PubMed  Google Scholar 

  28. Romano ACCC, Aranha ACC, Da Silveira BL et al (2011) Evaluation of carbon dioxide laser irradiation associated with calcium hydroxide in the treatment of dentinal hypersensitivity. A preliminary study. Lasers Med Sci 26:35–42. https://doi.org/10.1007/s10103-009-0746-4

    Article  PubMed  Google Scholar 

  29. Kiryk J, Matys J, Grzech-Leśniak K et al (2021) Sem evaluation of tooth surface after a composite filling removal using er:Yag laser, drills with and without curettes, and optional edta or naocl conditioning. Materials (Basel) 14:1–10. https://doi.org/10.3390/ma14164469

    Article  CAS  Google Scholar 

  30. Issar R, Mazumdar D, Ranjan S et al (2016) Comparative evaluation of the etching pattern of Er,Cr:YSGG & acid etching on extracted human teeth-an ESEM analysis. J Clin Diagn Res 10:ZC01–ZC05. https://doi.org/10.7860/JCDR/2016/19739.7705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hakki SS, Berk G, Dundar N et al (2010) Effects of root planing procedures with hand instrument or erbium, chromium:yttrium-scandium-gallium-garnet laser irradiation on the root surfaces: a comparative scanning electron microscopy study. Lasers Med Sci 25:345–353. https://doi.org/10.1007/s10103-009-0643-x

    Article  PubMed  Google Scholar 

  32. Keskin G, Çiloğlu M (2021) Efficacy of antimicrobial photodynamic therapy and Er,Cr:YSGG laser-activated irrigation on dentinal tubule penetration of MTA-based root canal sealer: a confocal microscopy study. Photodiagnosis Photodyn Ther 36:102584. https://doi.org/10.1016/j.pdpdt.2021.102584

    Article  CAS  PubMed  Google Scholar 

  33. Ding M, Shin SW, Kim MS et al (2014) The effect of a desensitizer and CO2 laser irradiation on bond performance between eroded dentin and resin composite. J Adv Prosthodont 6:165–170. https://doi.org/10.4047/jap.2014.6.3.165

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rechmann P, Bartolome N, Kinsel R et al (2017) Bond strength of etch-and-rinse and self-etch adhesive systems to enamel and dentin irradiated with a novel CO2 9.3 μm short-pulsed laser for dental restorative procedures. Lasers Med Sci 32:1981–1993. https://doi.org/10.1007/s10103-017-2302-y

    Article  PubMed  Google Scholar 

  35. Lopes FC, Roperto R, Akkus A et al (2016) Effects of different lasers on organic/inorganic ratio of radicular dentin. Lasers Med Sci 31:415–420. https://doi.org/10.1007/s10103-015-1862-y

    Article  CAS  PubMed  Google Scholar 

  36. Saberi S, Doshanlo SSJ, Bagheri H et al (2018) Evaluation of tooth surface irradiated with erbium: yttrium aluminum garnet and carbon dioxide lasers by atomic force microscopy. J Lasers Med Sci 9:188–193. https://doi.org/10.15171/jlms.2018.34

    Article  PubMed  PubMed Central  Google Scholar 

  37. Theodoro LH, Zezell DM, Garcia VG et al (2010) Comparative analysis of root surface smear layer removal by different etching modalities or erbium: yttrium-aluminum-garnet laser irradiation. A scanning electron microscopy study. Lasers Med Sci 25:485–491. https://doi.org/10.1007/s10103-009-0665-4

    Article  PubMed  Google Scholar 

  38. Arora S, Lamba AK, Faraz F et al (2016) Evaluation of the effects of Er,Cr:YSGG laser, ultrasonic scaler and curette on root surface profile using surface analyser and scanning electron microscope: an in vitro study. J lasers Med Sci 7:243–249. https://doi.org/10.15171/jlms.2016.43

    Article  PubMed  PubMed Central  Google Scholar 

  39. Birang R, Kiani S, Shokraneh A, Hasheminia SM (2015) Effect of Nd: YAG laser on the apical seal after root-end resection and MTA retrofill: a bacterial leakage study. Lasers Med Sci 30:583–589. https://doi.org/10.1007/s10103-013-1370-x

    Article  PubMed  Google Scholar 

  40. Merigo E, Bufflier P, Rocca JP et al (2021) Bactericidal effect of Er,Cr:YSGG laser irradiation on endodontic biofilm: an ex vivo study. J Photochem Photobiol B Biol 218. https://doi.org/10.1016/j.jphotobiol.2021.112185

  41. Bakry AS, Takahashi H, Otsuki M et al (2011) CO2 laser improves 45S5 bioglass interaction with dentin. J Dent Res 90:246–250. https://doi.org/10.1177/0022034510387793

    Article  CAS  PubMed  Google Scholar 

  42. Fried WA, Simon JC, Lucas S et al (2014) Near-IR imaging of cracks in teeth. Lasers Dent XX 8929:89290Q. https://doi.org/10.1117/12.2045686

    Article  Google Scholar 

  43. Ozkocak I, Sonat B (2015) Evaluation of effects on the adhesion of various root canal sealers after Er:YAG laser and irrigants are used on the dentin surface. J Endod 41:1331–1336. https://doi.org/10.1016/j.joen.2015.03.004

    Article  PubMed  Google Scholar 

  44. Page M, McKenzie J, Bossuyt P et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372. https://doi.org/10.1136/bmj.n71

  45. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan-a web and mobile app for systematic reviews. Syst Rev 5:1–10. https://doi.org/10.1186/s13643-016-0384-4

    Article  Google Scholar 

  46. Sheth VH, Shah NP, Jain R et al (2022) Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: the QUIN. J Prosthet Dent 1–5. https://doi.org/10.1016/j.prosdent.2022.05.019

  47. Deeb JG, Grzech-Leśniak K, Weaver C et al (2019) Retrieval of glass fiber post using Er:YAG laser and conventional endodontic ultrasonic method: an in vitro study. J Prosthodont 28:1024–1028. https://doi.org/10.1111/jopr.13114

    Article  PubMed  Google Scholar 

  48. Zen Aldeen R, Aljabban O, Milly H et al (2018) Effect of Er:YAG laser-activated irrigation on dentine debris removal from different parts of the root canal system: An in vitro study. Dent Med Probl 55:133–138. https://doi.org/10.17219/dmp/85709

    Article  Google Scholar 

  49. Silva Soares LE, Lavesa Martin OC, Moriyama LT et al (2013) Relationship between the chemical and morphological characteristics of human dentin after Er:YAG laser irradiation. J Biomed Opt 18:068001. https://doi.org/10.1117/1.jbo.18.6.068001

    Article  Google Scholar 

  50. Al-Saud LMS, Al-Nahedh HNA (2012) Occluding effect of Nd:YAG laser and different dentin desensitizing agents on human dentinal tubules in vitro: a scanning electron microscopy investigation. Oper Dent 37:340–355. https://doi.org/10.2341/10-188-L

    Article  CAS  PubMed  Google Scholar 

  51. Saraceni CH, Liberti E, Navarro RS et al (2013) Er:YAG-laser and sodium hypochlorite influence on bond to dentin. Microsc Res Tech 76:72–78. https://doi.org/10.1002/jemt.22138

    Article  CAS  PubMed  Google Scholar 

  52. Raldi DP, Mello I, Neves ACC et al (2010) Attachment of cultured fibroblasts and ultrastructural analysis of simulated cervical resorptions treated with high-power lasers and MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e154–e161. https://doi.org/10.1016/j.tripleo.2009.09.021

    Article  PubMed  Google Scholar 

  53. Heredia A, Silva DFF, ,Gluer Carracho H, et al (2015) Influence of Nd: YAG laser on the durability of resin-dentin bonds. J Laser Appl 27:042004

    Article  Google Scholar 

  54. Nahas P, Nammour S, Gerges E, Zeinoun T (2020) Comparison between shear bond strength of Er:YAG and Er,Cr:YSGG lasers-assisted dentinal adhesion of self-adhering resin composite: an ex vivo study. Dent J 8. https://doi.org/10.3390/DJ8030066

  55. Naghsh N, Birang R, Shafiei F et al (2020) Comparative evaluation of the effects of CO(2) and Er:YAG lasers on smear layer removal and blood cell attachment to tooth root surfaces. J lasers Med Sci 11:74–80. https://doi.org/10.15171/jlms.2020.13

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee J-Y, Lee E-S, Kang S-M, Kim B-I (2019) Application of quantitative light-induced fluorescence technology for tooth bleaching treatment and its assessment: an in vitro study. Photodiagnosis Photodyn Ther 25:208–213

    Article  CAS  PubMed  Google Scholar 

  57. Kiomarsi N, Salim S, Sarraf P et al (2016) Evaluation of the diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching. J Clin Exp Dent 8:e241–e245. https://doi.org/10.4317/jced.52666

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dilber E, Malkoc MA, Ozturk AN, Ozturk F (2013) Effect of various laser irradiations on the mineral content of dentin. Eur J Dent 7:74–80

    PubMed  PubMed Central  Google Scholar 

  59. Moura-Netto C, CAB G, ACV M-M et al (2011) Nd:YAG Laser Irradiation effect on apical intracanal dentin-a microleakage and SEM evaluation. Braz Dent J 22:377–381. https://doi.org/10.1590/S0103-64402011000500005

    Article  PubMed  Google Scholar 

  60. Gonçalves JJ, Marchesan MA, Souza-Gabriel AE et al (2010) Ultra-structural changes at the apical stop irradiated with CO2 laser. Photomed Laser Surg 28:345–349. https://doi.org/10.1089/pho.2008.2473

    Article  PubMed  Google Scholar 

  61. de Moura AAM, Moura-Netto C, Barletta FB et al (2010) Morphological assessment of dentine and cementum following apicectomy with Zekrya burs and Er:YAG laser associated with direct and indirect Nd:YAG laser irradiation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e77–e82. https://doi.org/10.1016/j.tripleo.2009.12.032

    Article  PubMed  Google Scholar 

Download references

Funding

This work was aided by The São Paulo Research Foundation (FAPESP): 2018/14450-1 and 2021/01623-8 and Coordination for the Improvement of Higher Education Personnel (CAPES): n° 33002029032P4.

Author information

Authors and Affiliations

Authors

Contributions

I. Ramirez: data screening, writing, manuscript editing; G. R. Bertolini: data screening, writing, manuscript editing; A.P. Candemil: manuscript reviewing, language correction, supervision, data curation; M. D. Sousa-Neto: conceptualization, supervision, manuscript reviewing; A. E. Souza-Gabriel: conceptualization, manuscript reviewing, language correction, supervision, manuscript reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aline E. Souza-Gabriel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez, I., Bertolini, G.R., Candemil, A.P. et al. Chemical and morphological analysis of dentin irradiated by different high-power lasers: a systematic review. Lasers Med Sci 38, 255 (2023). https://doi.org/10.1007/s10103-023-03912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03912-0

Keywords

Navigation