Skip to main content

Advertisement

Log in

Efficacy of Er:YAG laser for the peri-implantitis treatment and microbiological changes: a randomized controlled trial

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aims of this study were to identify the microbiological changes in the periodontal pockets following an Er:YAG laser (ERL) irradiation and mechanical debridement to compare the effectiveness of ERL irradiation to mechanical debridement for peri-implantitis treatment through randomized controlled trials. Twenty-three patients with peri-implantitis lesions were treated in either a test group, ERL set at energy level of 100 mJ/pulse, frequency of 10 Hz, pulse duration was 100 µs, and irradiated by three passages, or a control group, with mechanical debridement using an ultrasonic scaler. An examiner measured the following clinical parameters at different stages (a baseline and at 3- and 6-month post-treatment): probing depth (PD), bleeding on probing (BOP), marginal bone loss (MBL), and anaerobic bacteria counts. Linear regression, with generalized estimation equations, was used to compare the clinical parameters and anaerobic bacterial counts at different stages and between groups. The anaerobic bacterial counts significantly decreased within the control group during the follow-ups. At the 6-month follow-up, both groups showed a significant reduction in PD (test group: mean difference of 0.84 mm; control group: mean difference of 0.41 mm), and the test group showed a significantly higher PD reduction on the buccal site (1.31 mm) compared to that of the control group (0.25 mm). Both ERL and mechanical debridement treatments led to significant improvements in PD. When mechanical debridement therapy was used, significant anaerobic bacterial count reductions were observed. Future treatment of peri-implantitis should involve a combination of both of these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author within the framework of a scientific cooperation.

References

  1. Mombelli A, Décaillet F (2011) The characteristics of biofilms in peri-implant disease. J Clin Periodontol 38:203–213. https://doi.org/10.1111/j.1600-051X.2010.01666.x

    Article  PubMed  Google Scholar 

  2. Lee CT, Huang YW, Zhu L, Weltman R (2017) Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis. J Dent 62:1–12. https://doi.org/10.1016/j.jdent.2017.04.011

    Article  PubMed  Google Scholar 

  3. Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis–a review. Head Face Med 10(1):1–13. https://doi.org/10.1186/1746-160X-10-34

    Article  Google Scholar 

  4. Persson GR, Samuelsson E, Lindahl C, Renvert S (2010) Mechanical non-surgical treatment of peri-implantitis: a single-blinded randomized longitudinal clinical study. II Microbiological results J Clin Periodontol 37(6):563–573. https://doi.org/10.1111/j.1600-051X.2010.01561.x

    Article  PubMed  Google Scholar 

  5. Verdugo F, Laksmana T, Uribarri A (2016) Systemic antibiotics and the risk of superinfection in peri-implantitis. Arch Oral Biol 64:39–50. https://doi.org/10.1016/j.archoralbio.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  6. Hu ML, Zheng G, Lin H, Li N, Zhao PF, Han JM (2021) Affiliations expand network meta-analysis of the treatment efficacy of different lasers for peri-implantitis. Lasers Med Sci 36(3):619–629. https://doi.org/10.1007/s10103-020-03101-3

    Article  PubMed  Google Scholar 

  7. Shibli JA (2018) Is laser the best choice for the treatment of peri-implantitis? Photomed Laser Surg 36:569–570. https://doi.org/10.1089/pho.2018.4521

    Article  PubMed  Google Scholar 

  8. Mizutani K, Aoki A, Coluzzi D et al (2016) Lasers in minimally invasive periodontal and peri-implant therapy. Periodontol 71(1):185–212. https://doi.org/10.1111/prd.12123

    Article  Google Scholar 

  9. Kreisler M, Haj HA, Götz H, Duschner H, d’Hoedt B (2002) Effect of simulated CO2 and GaAlAs laser surface decontamination on temperature changes in Ti-plasma sprayed dental implants. Lasers Surg Med 30(3):233–239. https://doi.org/10.1002/lsm.10025

    Article  PubMed  Google Scholar 

  10. Kreisler M, Götz H, Duschner H (2002) Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17(2):202–211

    PubMed  Google Scholar 

  11. Romanos GE, Everts H, Nentwig GH (2000) Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 71(5):810–815. https://doi.org/10.1902/jop.2000.71.5.810

    Article  CAS  PubMed  Google Scholar 

  12. Tucker D, Cobb CM, Rapley JW, Killoy WJ (1996) Morphologic changes following in vitro CO2 laser treatment of calculus-ladened root surfaces. Lasers Surg Med 18(2):150–156. https://doi.org/10.1002/(SICI)1096-9101(1996)18:2%3c150::AID-LSM4%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  13. Schwarz F, Sculean A, Berakdar M, Szathmari L, Georg T, Becker J (2003) In vivo and in vitro effects of an Er:YAG laser, a GaAlAs diode laser, and scaling and root planing on periodontally diseased root surfaces: a comparative histologic study. Lasers Surg Med 32(5):359–366. https://doi.org/10.1002/lsm.10179

    Article  PubMed  Google Scholar 

  14. Yan M, Liu M, Wang M, Yin F, Xia H (2015) The effects of Er: YAG on the treatment of peri-implantitis: a meta-analysis of randomized controlled trials. Lasers Med Sci 30(7):1843–1853. https://doi.org/10.1007/s10103-014-1692-3

    Article  PubMed  Google Scholar 

  15. Wang CW, Ashnagar S, Gianfilippo DR, Arnett M, Kinney J, Wang HL (2021) Laser-assisted regenerative surgical therapy for peri-implantitis: a randomized controlled clinical trial. J Periodontol 92(3):378–388. https://doi.org/10.1002/JPER.20-0040

    Article  PubMed  Google Scholar 

  16. Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J (2005) Clinical evaluation of an Er: YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 16(1):44–52. https://doi.org/10.1111/j.1600-0501.2004.01051.x

    Article  PubMed  Google Scholar 

  17. Ando Y, Aoki A, Watanabe H, Ishikawa I (1996) Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg Med 19(2):190–200. https://doi.org/10.1002/(SICI)1096-9101(1996)19:2%3c190::AID-LSM11%3e3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  18. Lin GH, Suarez-Lopez del Amo F, Wang HL (2018) Laser therapy for treatment of peri-implant mucositis and peri-implantitis: an American Academy of Periodontology best evidence review. J Periodontol 89(7):766–782. https://doi.org/10.1902/jop.2017.160483

    Article  PubMed  Google Scholar 

  19. Schwarz F, Bieling K, Bonsmann M, Latz T, Becker J (2006) Nonsurgical treatment of moderate and advanced periimplantitis lesions: a controlled clinical study. Clin Oral Investig 10(4):279–288. https://doi.org/10.1007/s00784-006-0070-3

    Article  PubMed  Google Scholar 

  20. Persson GR, Roos-Jansåker A-M, Lindahl LC, Renvert S (2011) Microbiologic results after non-surgical erbium-doped:yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial. J Periodontol 82(9):1267–1278. https://doi.org/10.1902/jop.2011.100660

    Article  PubMed  Google Scholar 

  21. Folwaczny M, Mehl A, Aggstaller H, Hickel R (2002) Antimicrobial effects of 2.94 microm Er:YAG laser radiation on root surfaces: an in vitro study. J Clin Periodontol 29(1):73–78. https://doi.org/10.1034/j.1600-051x.2002.290111.x

    Article  PubMed  Google Scholar 

  22. Sugi D (1998) Effects of irradiation of Er: YAG laser on quantity of endotoxin and microhardness of surface in exposed root after removal of calculus. Jpn Dent J 41:1009–1017

    Google Scholar 

  23. Gonçalves F, Zanetti AL, Zanetti RV et al (2010) Effectiveness of 980-mm diode and 1064-nm extra-long-pulse neodymium-doped yttrium aluminum garnet lasers in implant disinfection. Photomed Laser Surg 28(2):273–280. https://doi.org/10.1089/pho.2009.2496

    Article  PubMed  Google Scholar 

  24. Nejem Wakim R, Namour M, Nguyen HV et al (2018) Decontamination of dental implant surfaces by the Er:YAG laser beam: a comparative in vitro study of various protocols. Dent J (Basel) 6(4):66. https://doi.org/10.3390/dj6040066

    Article  PubMed  Google Scholar 

  25. Tosun E, Tasar F, Strauss R, Kıvanc DG, Ungor C (2012) Comparative evaluation of antimicrobial effects of Er:YAG, diode, and CO2 lasers on titanium discs: an experimental study. J Oral Maxillofac Surg 70(5):1064–1069. https://doi.org/10.1016/j.joms.2011.11.021

    Article  PubMed  Google Scholar 

  26. Kreisler M, Kohnen W, Marinello C, Götz H, Duschner H, Jansen B, d’Hoedt B (2002) Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 73(11):1292–1298. https://doi.org/10.1902/jop.2002.73.11.1292

    Article  PubMed  Google Scholar 

  27. Badersten A, Nilvéus R, Egelberg J (1981) Effect of nonsurgical periodontal therapy: I. Moderately advanced periodontitis J Clin Periodontol 8(1):57–72. https://doi.org/10.1111/j.1600-051X.1981.tb02024.x

    Article  CAS  PubMed  Google Scholar 

  28. Renvert S, Lindahl C, Jansåker A-MR, Persson GR (2011) Treatment of peri-implantitis using an Er: YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol 38(1):65–73. https://doi.org/10.1111/j.1600-051X.2010.01646.x

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Southern Taiwan Science Park, Taiwan (grant number BX-04–11-21–106).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to present study. J.-H.C. and K.-T.L. designed the study. C.-H.L. and Y.-M.W. analyzed and interpreted the patient data regarding the disease. D.-Y.Y., I.-H.C., Y.-C.L., and J.-C.K. reviewed and edited the original draft preparation. J.-H.C., K.-T.L., and Y.-C.L. was a major contributor in writing the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kun-Tsung Lee.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Institutional Review Board of Kaohsiung Medical University Hospital (IRB No.: KMUH-IRB-F(II)-20170083) and registered with ClinicalTrials.gov (NCT04811144).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 314 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Lin, YC., Kung, JC. et al. Efficacy of Er:YAG laser for the peri-implantitis treatment and microbiological changes: a randomized controlled trial. Lasers Med Sci 37, 3517–3525 (2022). https://doi.org/10.1007/s10103-022-03627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-022-03627-8

Keywords

Navigation