Skip to main content

Advertisement

Log in

LED phototherapy in full-thickness burns induced by CO2 laser in rats skin

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Many studies have been conducted on the treatment of burns because they are important in morbidity and mortality. These studies are mainly focused on improving care and quality of life of patients. The aim of this study was evaluate the LED phototherapy effects in rats skin full-thickness burns induced by CO2 laser. The animals were divided in NT group that did not received any treatment and LED group that received LED irradiation at 685 nm, 220 mW, and 4.5 J/cm2 during 40 s by burned area. Biopsies were obtained after 7, 14, and 21 days of treatment and submitted to histological and immunohistochemical analysis. The LED phototherapy shows anti-inflammatory effects, improves angiogenesis, and stimulates the migration and proliferation of fibroblasts. The T CD8+ lymphocytes were more common in burned areas compared to T CD4+ lymphocytes since statistically significant differences were observed in the LED group compared to the NT group after 7 days of treatment. These results showed that LED phototherapy performs positive influence in full-thickness burns repair from the healing process modulated by cellular immune response. The obtained results allowed inferring that burns exhibit a characteristic cell immune response and this cannot be extrapolated to other wounds such as incision and wounds induced by punch, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vale ECS (2005) Primeiro atendimento em queimaduras: A abordagem do dermatologista. An Bras Dermatol 80(1):9–19. https://doi.org/10.1590/S0365-05962005000100003

    Article  Google Scholar 

  2. Silva VCC (2006) O efeito do laser de baixa potência (658nm) na reparação tecidual de queimaduras de terceiro grau em ratos. Dissertation, Vale of the Paraiba University

  3. Chiari A, Fernandes MC, Negrini F, Oliveira J, Mesquita RA (2007) Hidroterapia e exercícios respiratórios associados à massoterapia na reabilitação de pacientes com queimaduras acometendo a região torácica. Fisioter Bras 8(6):441–447

    Google Scholar 

  4. Leão CRG, Andrade ES, Fabrini DS, Oliveira RA, Machado GLB, Gontijo LC (2011) Epidemiologia das queimaduras no estado de Minas Gerais. Rev Bras Cir Plast 26(4):573–577. https://doi.org/10.1590/S1983-51752011000400006

    Article  Google Scholar 

  5. Alrawi M, Crowley T, Pape S (2014) Bacterial colonization of the burn wound: a UK experience. J Wound Care 23(5):274–277. https://doi.org/10.12968/jowc.2014.23.5.274

    Article  PubMed  CAS  Google Scholar 

  6. Orban C, Tomescu D (2013) The importance of early diagnosis of sepsis in severe burned patients: outcomes of 100 patients. Chirurgia (Bucur) 108(3):385–388

    CAS  Google Scholar 

  7. Hrynyk M, Neufeld RJ (2014) Insulin and wound healing. Burns 40(8):1443–1446. https://doi.org/10.1016/j.burns.2014.03.020

    Article  Google Scholar 

  8. World Health Organization (2011) Burn prevention: sucess stories and lessons learned. World Library Catologuing in Publication, Geneva 100p

    Google Scholar 

  9. Peck MD (2011) Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns 37(7):1087–1100. https://doi.org/10.1016/j.burns.2011.06.005

    Article  PubMed  Google Scholar 

  10. Fiório FB, Albertini R, Leal-Júnior ERP, Carvalho PT (2014) Effect of low-level laser therapy on types I and III collagen and inflammatory cells in rats with induced third-degree burns. Lasers Med Sci 29:313–319. https://doi.org/10.1007/s10103-013-1341-2

    Article  PubMed  Google Scholar 

  11. Chiarotto GB, Neves LMG, Esquisatto MAM, Amaral MEC, Santos GMT, Mendonça FAS (2014) Effects of laser irradiation (670-nm InGaP and 830-nm GaAlAs) on burn of second-degree in rats. Lasers Med Sci 29(5):1685–1693. https://doi.org/10.1007/s10103-014-1573-9

    Article  PubMed  Google Scholar 

  12. Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2006) Clinical and experimental applications of NIRLED photobiomodulation. Photomedicine Laser Surg 24(2):121–128. https://doi.org/10.1089/pho.2006.24.121

    Article  CAS  Google Scholar 

  13. Meyer PF, Araújo HG, Carvalho MGF, Tatum BIS, Fernandes ICAG, Ronzio OA, Pinto MVM (2010) Avaliação dos efeitos do LED na cicatrização de feridas cutâneas em ratos Wistar. Fisioter Bras 11(6):428–432

    Google Scholar 

  14. Kerppers II, Lima CJ, Fernandes AB, Villaverde AB (2015) Effect of light-emitting diode (ʎ 627 nm and 945 nm ʎ) treatment on first intention healing: immunohistochemical analysis. Lasers Med Sci 30:397–401. https://doi.org/10.1007/s10103-014-1668-3

    Article  PubMed  Google Scholar 

  15. Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali AS, Desai S, Swan J (2015) Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol 8(6):36–44

    PubMed  PubMed Central  Google Scholar 

  16. Sampaio SCO, Monteiro JSC, Cangussú MC, Santos GMP, Santos MA, Santos JN, Pinheiro AL (2013) Effect of laser and LED phototherapies on the healing of cutaneous wound on healthy and iron-deficient Wistar rats and their impact on fibroblastic activity during wound healing. Lasers Med Sci 28(3):799–806. https://doi.org/10.1007/s10103-012-1161-9

    Article  Google Scholar 

  17. Chaves MEA, Araújo AR, Piancastelli ACC, Pinotti M (2014) Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89(4):616–623. https://doi.org/10.1590/abd1806-4841.20142519

    Article  PubMed  PubMed Central  Google Scholar 

  18. Siqueira CPCM, Filho DOT, Lima FM, Silva FP, Durante H, Dias IFL, Duarte JL, Kashimoto RK, Castro VAB (2009) Efeitos biológicos da luz: aplicação de terapia de baixa potência empregando LEDs (Light Emitting Diode) na cicatrização da úlcera venosa: relato de caso. Semina Cien Biol Saude 30(1):37–46

    Article  Google Scholar 

  19. Melo MS, Alves LP, Navarro RS, Lima CJ, Munin E, Vilela-Goulart MG, Gomes MF, Salgado MAC, Zângaro RA (2014) Experimental full-thickness burns induced by CO2 laser. Lasers Med Sci 29(5):1709–1714. https://doi.org/10.1007/s10103-014-1585-5

    Article  Google Scholar 

  20. Alves DB, Tozeti IA, Gatto FA, Cassandri F, Ferreira AMT, Fernandes CES, Falcão GR, Scapulatempo IDL, Padovani CTJ, Abdo MAGS (2010) Linfócitos CD4 e CD8 e células NK no estroma da cérvice uterina de mulheres infectadas pelo papilomavírus humano. Rev Soc Bras Med Trop 43(4):425–429. https://doi.org/10.1590/S0037-86822010000400018

    Article  PubMed  Google Scholar 

  21. Dornelas MT, Rodrigues MF, Machado DC, Gollner AM, Ferreira AP (2009) Expressão de marcadores de proliferação celular e apoptose no carcinoma espinocelular de pele e ceratose actínica. An Bras Dermatol 84(5):469–475. https://doi.org/10.1590/S0365-05962009000500004

    Article  PubMed  Google Scholar 

  22. Fiório FB, Silveira L Jr, Munin E, Lima CJ, Fernandes KP, Mesquita-Ferrari RA, Carvalho PT, Lopes-Martins RA, Aimbire F, Carvalho RA (2011) Effect of incoherent LED radiation on third degree burning wounds in rats. J Cosmet Laser Ther 13(6):315–322. https://doi.org/10.3109/14764172.2011.630082

    Article  PubMed  Google Scholar 

  23. Neves SM, Nicolau RA, Maia Filho ALM, Mendes LM, Veloso AM (2014) Digital photogrammetry and histomorphometric assessment of the effect of non-coherent light (light-emitting diode) therapy (λ640±20 nm) on the repair of third-degree burns in rats. Lasers Med Sci 29:203–212. https://doi.org/10.1007/s10103-013-1312-7

    Article  PubMed  Google Scholar 

  24. Filho GB (1998) Bogliolo: Patologia Geral. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  25. Catão MHCV, Costa RO, Nonaka CFW, Albuquerque Júnior RLC, Costa IRRS (2016) Green LED light has anti-inflammatory effect on burns in rats. Burns 42:392–396. https://doi.org/10.1016/j.burns.2015.07.003

    Article  PubMed  Google Scholar 

  26. Ilkovitch D (2011) Role of immune-regulatory cells in skin pathology. J Leukoc Biol 89:41–49. https://doi.org/10.1189/jlb.0410229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Blotnick S, Peoples GE, Freeman MR, Erbelein TJ, Klagsbrun M (1994) T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Cell Biology. Proc Nati Acad Sci USA 91:2890–2894

    Article  CAS  Google Scholar 

  28. Dall Agnol MA, Nicolau RA, Lima CJ, Munin E (2009) Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24:909–916. https://doi.org/10.1007/s10103-009-0648-5

    Article  PubMed  Google Scholar 

  29. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25(2):102–106. https://doi.org/10.1089/pho.2006.2011

    Article  PubMed  Google Scholar 

  30. Sousa AP, Paraguassú GM, Silveira NT, Souza J, Cangussú MC, Santos JN, Pinheiro AL (2013) Laser and LED phototherapies on angiogenesis. Lasers Med Sci 28(3):981–987. https://doi.org/10.1007/s10103-012-1187-z

    Article  PubMed  Google Scholar 

  31. Catão MHV, Nonaka CF, Albuquerque RL, Bento PM, Costa RO (2015) Effects of red laser, infrared, photodynamic therapy and green LED on the healing process of third-degree burns: clinical and histological study in rats. Lasers Med Sci 30(1):421–428. https://doi.org/10.1007/s10103-014-1687-0

    Article  Google Scholar 

  32. Meireles GC, Santos JN, Chagas PO, Moura AP, Pinheiro AL (2008) A comparative study of the effects of laser photobiomodulation on the healing of third-degree burns: a histological study in rats. Photomed Laser Surg 26(2):159–166. https://doi.org/10.1089/pho.2007.2052

    Article  Google Scholar 

  33. Buchanan IB, Maile R, Frelinger JA, Fair JH, Meyer AA, Cairns BA (2006) The effect of burn injury on CD8+ and CD4+ T cells in an irradiation model of homeostatic proliferation. J Trauma 61:1062–1068. https://doi.org/10.1097/01.ta.0000195984.56153.21

    Article  PubMed  Google Scholar 

  34. Kokhaei P, Barough MS, Hassan ZM (2014) Cimetidine effects on the immunosuppression induced by burn injury. Int Immunopharmacol 22(1):273–276. https://doi.org/10.1016/j.intimp.2014.07.003

    Article  PubMed  CAS  Google Scholar 

  35. Davis PA, Corless DJ, Aspinall R, Wastell C (2001) Effect of CD4+ e CD8+ cell depletion on wound healing. Br J Surg 88:298–304. https://doi.org/10.1046/j.1365-2168.2001.01665.x

    Article  PubMed  CAS  Google Scholar 

  36. Chen L, Mehta ND, Zhao Y, DiPietro LA (2014) Absence of CD4 or CD8 lymphocytes changes infiltration of inflammatory cells and profiles of cytokine expression in skin wounds, but does not impair healing. Exp Dermatol 23:189–194. https://doi.org/10.1111/exd.12346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Milene da Silva Melo thanks the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil/Process no. 09/53509-2) for the doctoral scholarship.

Renato Amaro Zângaro thanks the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil/Process no. 11/50468-3) for the financial support to the equipment and consumables.

Funding

This study is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Processes No. 09/53509-2 and 11/50468-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milene da Silva Melo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures in the animals of this study were in accordance with the ethical standards and were carried out with the approval of the Research Ethics Committee of the São José dos Campos Dental School, Institute of Science and Technology of the Paulista State University (ICT-UNESP), São José dos Campos, SP, Brazil (Protocol No 10/2011-PA/CEP).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Melo, M., Alves, L.P., Fernandes, A.B. et al. LED phototherapy in full-thickness burns induced by CO2 laser in rats skin. Lasers Med Sci 33, 1537–1547 (2018). https://doi.org/10.1007/s10103-018-2515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2515-8

Keywords

Navigation