Skip to main content

Advertisement

Log in

A novel dual-wavelength laser stimulator to elicit transient and tonic nociceptive stimulation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to develop a new laser stimulator to elicit both transient and sustained heat stimulation with a dual-wavelength laser system as a tool for the investigation of both transient and tonic experimental models of pain. The laser stimulator used a 980-nm pulsed laser to generate transient heat stimulation and a 1940-nm continuous-wave (CW) laser to provide sustained heat stimulation. The laser with 980-nm wavelength can elicit transient pain with less thermal injury, while the 1940-nm CW laser can effectively stimulate both superficial and deep nociceptors to elicit tonic pain. A proportional integral-derivative (PID) temperature feedback control system was implemented to ensure constancy of temperature during heat stimulation. The performance of this stimulator was evaluated by in vitro and in vivo animal experiments. In vitro experiments on totally 120 specimens fresh pig skin included transient heat stimulation by 980-nm laser (1.5 J, 10 ms), sustained heat stimulation by 1940-nm laser (50–55 °C temperature control mode or 1.5 W, 5 min continuous power supply), and the combination of transient/sustained heat stimulation by dual lasers (1.5 J, 10 ms, 980-nm pulse laser, and 1940-nm laser with 50–55 °C temperature control mode). Hemoglobin brushing and wind-cooling methods were tested to find better stimulation model. A classic tail-flick latency (TFL) experiment with 20 Wistar rats was used to evaluate the in vivo efficacy of transient and tonic pain stimulation with 15 J, 100 ms 980-nm single laser pulse, and 1.5 W constant 1940-nm laser power. Ideal stimulation parameters to generate transient pain were found to be a 26.6 °C peak temperature rise and 0.67 s pain duration. In our model of tonic pain, 5 min of tonic stimulation produced a temperature change of 53.7 ± 1.3 °C with 1.6 ± 0.2% variation. When the transient and tonic stimulation protocols were combined, no significant difference was observed depending on the order of stimuli. Obvious tail-flick movements were observed. The TFL value of transient pain was 3.0 ± 0.8 s, and it was 4.4 ± 1.8 s for tonic pain stimulation. This study shows that our novel design can provide effective stimulation of transient pain and stable tonic pain. Furthermore, it can also provide a reliable combination of transient and consistent stimulations for basic studies of pain perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bonica JJ (1979) The need of a taxonomy. Pain 6(3):247–248

    Article  CAS  PubMed  Google Scholar 

  2. Guérit JM (2012) Neurophysiological pain assessment: how to objectify a subjective phenomenon? Neurophysiologie clinique-Clinical neurophysiology 42(5):263

    Article  PubMed  Google Scholar 

  3. Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A et al (2014) The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci 29(2):559–564

    Article  PubMed  Google Scholar 

  4. Li FJ, Zhang JY, Zeng XT, Guo Y (2015) Low-level laser therapy for orthodontic pain: a systematic review. Lasers Med Sci 30(6):1789–1803

    Article  CAS  PubMed  Google Scholar 

  5. He WL, Yu FY, Li CJ et al (2015) A systematic review and meta-analysis on the efficacy of low-level laser therapy in the management of complication after mandibular third molar surgery. Lasers Med Sci 30(6):1779–1788

    Article  CAS  PubMed  Google Scholar 

  6. Paolillo AR, Paolillo FR, João JP et al (2015) Synergic effects of ultrasound and laser on the pain relief in women with hand osteoarthritis. Lasers Med Sci 30(1):1–8

    Article  Google Scholar 

  7. Lealjunior EC, Johnson DS, Saltmarche A, Demchak T (2014) Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial. Lasers Med Sci 29(6):1839

    Article  Google Scholar 

  8. Ruaro JA, Fréz AR, Ruaro MB, Nicolau RA (2014) Low-level laser therapy to treat fibromyalgia. Lasers Med Sci 29(6):1815–1819

    Article  CAS  PubMed  Google Scholar 

  9. Soleimanpour H, Gahramani K, Taheri R et al (2014) The effect of low-level laser therapy on knee osteoarthritis: prospective, descriptive study. Lasers Med Sci 29(5):1695–1700

    Article  PubMed  Google Scholar 

  10. Borzabadi-Farahani A (2016) Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B Biol 162:577

    Article  CAS  Google Scholar 

  11. Glazov G, Yelland M, Emery J (2016) Low-level laser therapy for chronic non-specific low back pain: a meta-analysis of randomised controlled trials. Acupunct Med 34(5):2015–11036

    Article  Google Scholar 

  12. Wellington J (2014) Noninvasive and alternative management of chronic low back pain (efficacy and outcomes). Neuromodulation Technology at the Neural Interface 17(Suppl 2):24–30

    Article  Google Scholar 

  13. Wieckiewicz M, Boening K, Wiland P et al (2015) Reported concepts for the treatment modalities and pain management of temporomandibular disorders. The Journal of Headache and Pain 16(1):106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Woÿniak K, Piątkowska D, Lipski M, Mehr K (2013) Surface electromyography in orthodontics—a literature review. Medical Science Monitor International Medical Journal of Experimental & Clinical Research 19(1):416–423

    Google Scholar 

  15. de Andrade AL, Bossini PS, Parizotto NA (2016) Use of low level laser therapy to control neuropathic pain: a systematic review. J Photochem Photobiol B Biol 164:36

    Article  Google Scholar 

  16. Zecha JAEM, Raber-Durlacher JE, Nair RG et al (2016) Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer 24(6):2781–2792

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chow R, Armati P, Laakso EL et al (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomedicine & Laser Surgery 29(6):365

    Article  Google Scholar 

  18. Alghamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27(1):237–249

    Article  PubMed  Google Scholar 

  19. Oron U, Ilic S, De TL, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomedicine & Laser Surgery 25(3):180–182

    Article  CAS  Google Scholar 

  20. Liu J, Fang Y, Yao S et al (2014) Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 33(3):627

    Article  Google Scholar 

  21. Cruccu G, Aminoff MJ, Curio G et al (2008) Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119(8):1705–1719

    Article  CAS  PubMed  Google Scholar 

  22. Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Neurophysiologie Clinique/Clinical Neurophysiology 33(6):269–277

    Article  CAS  PubMed  Google Scholar 

  23. Haanpää M, Attal N, Backonja M et al (2011) NeuPSIG guidelines on neuropathic pain assessment. Pain 152(1):14–27

    Article  PubMed  Google Scholar 

  24. Arendt-Nielsen L, Chen AC (2003) Lasers and other thermal stimulators for activation of skin nociceptors in humans. Neurophysiologie Clinique/Clinical Neurophysiology 33(6):259–268

    Article  CAS  PubMed  Google Scholar 

  25. Gülsoy M, Durak K, Kurt A et al (2001) The 980-nm diode laser as a new stimulant for laser evoked potentials studies. Lasers Surg Med 28(3):244–247

    Article  PubMed  Google Scholar 

  26. Treede R, Lorenz J, Baumgärtner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiologie Clinique/Clinical Neurophysiology 33(6):303–314

    Article  PubMed  Google Scholar 

  27. Peng W, Hu L, Zhang Z, Hu Y (2014) Changes of spontaneous oscillatory activity to tonic heat pain. PLoS One 9(3):e91052

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen AC, Treede R (1985) The McGill Pain Questionnaire in the assessment of phasic and tonic experimental pain: behavioral evaluation of the ‘pain inhibiting pain’effect. Pain 22(1):67–79

    Article  CAS  PubMed  Google Scholar 

  29. Edwards RR (2016) Clinical Assessment Tools: Quantitative Sensory Testing. Opioid-Induced Hyperalgesia 38

  30. Gong N, Gao Z, Wang Y et al (2011) A series of D-amino acid oxidase inhibitors specifically prevents and reverses formalin-induced tonic pain in rats. J Pharmacol Exp Ther 336(1):282–293

    Article  CAS  PubMed  Google Scholar 

  31. Sinke C, Schmidt K, Forkmann K, Bingel U (2015) Phasic and tonic pain differentially impact the interruptive function of pain. PLoS One 10(2):e118363

    Article  Google Scholar 

  32. Albu S, Gómez-Soriano J, Avila-Martin G, Taylor J (2015) Deficient conditioned pain modulation after spinal cord injury correlates with clinical spontaneous pain measures. Pain 156(2):260–272

    Article  PubMed  Google Scholar 

  33. Wu G, Campbell JN, Meyer RA (2001) Effects of baseline skin temperature on pain ratings to suprathreshold temperature-controlled stimuli. Pain 90(1):151–156

    Article  CAS  PubMed  Google Scholar 

  34. Churyukanov M, Plaghki L, Legrain V, Mouraux A (2012) Thermal detection thresholds of Aδ-and C-fibre afferents activated by brief CO2 laser pulses applied onto the human hairy skin. PLoS One 7(4):e35817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spiegel J, Hansen C, Treede R (2000) Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials. Clin Neurophysiol 111(4):725–735

    Article  CAS  PubMed  Google Scholar 

  36. Yang J, Dong X, Mu Z et al (2015) Temporal and spatial temperature distributions on glabrous skin irradiated by a 1940 nm continuous-wave laser stimulator. Biomedical optics express 6(4):1451–1463

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qiao Z, Wang J, Han J, Luo F (2008) Dynamic processing of nociception in cortical network in conscious rats: a laser-evoked field potential study. Cell Mol Neurobiol 28(5):671–687

    Article  PubMed  Google Scholar 

  38. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210

    Article  CAS  PubMed  Google Scholar 

  39. Hoeben RM, Krabbenbos IP, van Dongen EP et al (2016) Selective laser stimulation of Aδ-or C-fibers through application of a spatial filter: a study in healthy volunteers. Journal of Neurology Research 6(1):1–7

    Article  Google Scholar 

  40. Krabbenbos IP, van Swol CF, van Dongen EP et al (2013) Stimulating Aδ and C-fibers in the lower limb with a 980 nm diode laser. Journal of Neurology Research 3(2):56–61

    Google Scholar 

  41. Ronga I, Valentini E, Mouraux A, Iannetti GD (2013) Novelty is not enough: laser-evoked potentials are determined by stimulus saliency, not absolute novelty. J Neurophysiol 109(3):692–701

    Article  CAS  PubMed  Google Scholar 

  42. Baumgärtner U, Greffrath W, Treede R (2012) Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials: merits and limitations for basic science and clinical use. Neurophysiologie Clinique/Clinical Neurophysiology 42(5):267–280

    Article  PubMed  Google Scholar 

  43. Roosink M, Renzenbrink GJ, Buitenweg JR et al (2011) Somatosensory symptoms and signs and conditioned pain modulation in chronic post-stroke shoulder pain. J Pain 12(4):476–485

    Article  PubMed  Google Scholar 

  44. Campbell CM, Bounds SC, Kuwabara H et al (2013) Individual variation in sleep quality and duration is related to cerebral mu opioid receptor binding potential during tonic laboratory pain in healthy subjects. Pain Med 14(12):1882–1892

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. He Huang from Chinese Academy of Medical Science and Peking Union Medical College, Dr. Jinfu Liu from Fibolaser Technologies Co., Ltd., and Mr. Bolin Sun from Hnreidu Inc. for technological support in the study of this laser generator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Li.

Ethics declarations

This work is supported by the fundamental research funds for the central universities. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

All procedures performed in studies involving animals were in accordance with the ethical standards of the Institutional Animal Care and Use Committee of Peking Union Medical College (Animal Experimental Ethical Number 2016-002).

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Liu, T., Wang, H. et al. A novel dual-wavelength laser stimulator to elicit transient and tonic nociceptive stimulation. Lasers Med Sci 32, 1001–1008 (2017). https://doi.org/10.1007/s10103-017-2200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2200-3

Keywords

Navigation