Skip to main content

Advertisement

Log in

Analysis of the interfacial micromorphology and bond strength of adhesive systems to Er:YAG laser-irradiated dentin

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study evaluated the effects of different parameters of dentin irradiation with erbium-doped yttrium aluminum garnet (Er:YAG) laser on bond strength to dentin and analyzed the ultramorphological characteristics of resin–laser-irradiated dentin interfaces using a transmission electron microscope (TEM). Dentin surfaces were abraded with SiC paper (600 grit) or Er:YAG laser-irradiated (120/4, 140/6, 180/4, or 200/6 mJ/Hz). Three adhesive systems were tested: Single Bond Plus (3M ESPE), Clearfil Protect Bond (Kuraray Med.), and Clearfil Tri-S Bond (Kuraray Med.). Treatments were performed over flat dentin surfaces of human third molars. Specimens were stored in distilled water for 1 week or 6 months and prepared for a microtensile bond strength test and interfacial ultrastructure for analysis. Microtensile bond strength data (n = 5) were analyzed with three-way analysis of variance. Irradiation with Er:YAG laser did not reduce the bond strength values for self-etching adhesives even after 6 months of water storage. The hybrid layer formation was observed only when the adhesives were applied to non-irradiated dentin (control group). Nanoleakage occurred in all resin–dentin interfaces using Single Bond Plus for both periods. Nanoleakage pattern and bond strength of self-etching adhesives to dentin were less affected by Er:YAG laser irradiation and by the 6-month storage in water than was those of the etch-and-rinse adhesive. TEM analysis revealed no hybridization when dentin was laser-irradiated. Clinical significance: Minimally invasive caries removal has been proposed. Nevertheless, bonding mechanisms to lased dentin are not entirely described. Knowing the interaction between the treated dentin and bonding agents and its behavior over time is of utmost importance for new technologies. Regarding that, two-bottle self-etching adhesive system provided a more consistent evidence of its better behavior when bonding to lased substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Apel C, Meister J, Gotz H, Duschner H, Gutknecht N (2005) Structural changes in human dental enamel after subablative erbium laser irradiation and its potential use for caries prevention. Caries Res 39:65–70

    Article  PubMed  CAS  Google Scholar 

  2. Aranha ACC, Eduardo CP, Gutknecht N, Marques MM, Ramalho KM, Apel C (2007) Analysis of the interfacial micromorphology of adhesive systems in cavities prepared with Er, Cr:YSGG, Er:YAG laser and bur. Microsc Res Tech 70:745–751

    Article  PubMed  Google Scholar 

  3. Esteves-Oliveira M, Zezell DM, Apel C, Turbino ML, Aranha MCC, Eduardo CP, Gutknecht N (2007) Bond strength of self-etching primer to bur cut, Er, Cr:YSGG, and Er:YAG lased dental surfaces. Photomed Laser Surg 25:373–380

    Article  PubMed  Google Scholar 

  4. He Z, Otsuki M, Sadr A, Tagami J (2009) Acid resistance of dentin after erbium: yttrium-aluminum-garnet laser irradiation. Lasers Med Sci 24:507–513

    Article  PubMed  Google Scholar 

  5. Carvalho AO, Reis AF, de Oliveira MT, de Freitas PC, Aranha AC, Eduardo CP, Giannini M (2011) Bond strength of adhesive systems to Er, Cr:YSGG laser-irradiated dentin. Photomed Laser Surg 29:747–752

    Article  PubMed  CAS  Google Scholar 

  6. Hibst R, Keller U (1989) Experimental studies of the application of the ER:YAG laser on the dental hard substances: I measurement of the ablation rate. Lasers Surg Med 9:338–344

    Article  PubMed  CAS  Google Scholar 

  7. Keller U, Hibst R (1989) Experimental studies of the application of the Er:YAG laser on the dental hard substances: II light microscopic and SEM investigations. Lasers Surg Med 9:345–351

    Article  PubMed  CAS  Google Scholar 

  8. Visuri SR, Gilbert JL, Wright DD, Wigdor HA, Walsh JT Jr (1996) Shear strength of composite bonded to Er:YAG laser-prepared dentin. J Dent Res 75:599–605

    Article  PubMed  CAS  Google Scholar 

  9. Curti M, Rocca JP, Bertrand MF, Nammour S (2004) Morphostructural aspects of Er:YAG prepared class V cavities. J Clin Laser Med Surg 22:119–124

    Article  PubMed  Google Scholar 

  10. Oliveira MT, Freitas PM, Paula Eduardo C, Ambrosano GM, Giannini M (2007) Influence of diamond sono-abrasion, air-abrasion and Er:YAG laser irradiation on bonding of different adhesive systems to dentin. Eur J Dent 1:158–166

    PubMed  Google Scholar 

  11. Ceballos L, Toledano M, Osorio R, Tay FR, Marshall GW (2002) Bonding to Er-YAG-laser-treated dentin. J Dent Res 81:119–122

    Article  Google Scholar 

  12. Oliveira MT, Arrais CA, Aranha AC, Paula Eduardo C, Miyake K, Rueggeberg FA, Giannini M (2010) Micromorphology of resin-dentin interfaces using one-bottle etch&rinse and self-etching adhesive systems on laser-treated dentin surfaces: a confocal laser scanning microscope analysis. Lasers in Surgery Medicine 42:662–670

    Article  Google Scholar 

  13. Moretto SG, Azambuja N Jr, Arana-Chavez VE, Reis AF, Giannini M, Eduardo CP, De Freitas PM (2011) Effects of ultramorphological changes on adhesion to lased dentin—scanning electron microscopy and transmission electron microscopy analysis. Microsc Res Tech 74:720–726

    Article  PubMed  Google Scholar 

  14. Aoki A, Ishikawa I, Yamada T, Otsuki M, Watanabe H, Tagami J, Ando Y, Yamamoto H (1998) Comparison between Er:YAG laser and conventional technique for root carious treatment in vitro. J Dent Res 77:1404–1414

    Article  PubMed  CAS  Google Scholar 

  15. Munck DJ, Meerbeek VB, Yudhira R, Lambrechts P, Vanherle G (2002) Micro-tensile bond strength of two adhesive to Er:YAG laser vs. bur-cut enamel and dentin. Eur J Oral Sci 110:322–329

    Article  PubMed  Google Scholar 

  16. Reis AF, Bebran-Russo AK, Giannini M, Pereira PNR (2007) Interfacial ultramorphology of single-step adhesives: nanoleakage as a function of time. J Oral Rehabil 34:213–221

    Article  PubMed  CAS  Google Scholar 

  17. Reis AF, Giannini M, Pereira PNR (2007) Long-term TEM analysis of the nanoleakage patterns in resin–dentin interfaces produced by different bonding strategies. Dent Mater 23:1164–1172

    Article  PubMed  CAS  Google Scholar 

  18. Reis AF, Carrilho MRO, Ghaname E, Pereira PNR, Pereira M, Nikaido T, Tagami J (2010) Effects of water-storage on the physical and ultramorphological features of adhesives and primer/adhesive mixtures. Dent Mater J 29:697–705

    Article  PubMed  Google Scholar 

  19. Fowler BO, Kuroda S (1986) Changes in heated and in laser irradiated human tooth enamel and their probable effects on solubility. Calcif Tissue Int 8:197–208

    Article  Google Scholar 

  20. Meurman JH, Voegel JC, Rauhamma-mäkinem R, Gasser P, Thomann JM, Hemmerle J, Luomanen M, Paunio L, Frank RM (1991) Effects of carbon dioxide, Nd:YAG and carbon dioxide Nd:YAG combination lasers at high energy densities on synthetic hydroxyapatite. Caries Res 26:77–83

    Article  Google Scholar 

  21. Fan D, Legeros RZ (1995) Consequence of heat treatment on properties of dentin. J Dent Res 74:525

    Google Scholar 

  22. Yoshida Y, Nagakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H (2004) Comparative study on adhesive performance of functional monomers. J Dent Res 83:454–458

    Article  PubMed  CAS  Google Scholar 

  23. Fu B, Sun X, Qian W, Shen Y, Chen R, Hannig M (2005) Evidence of chemical bonding to hydroxyapatite by phosphoric acid esters. Biomaterials 26:5104–5110

    Article  PubMed  CAS  Google Scholar 

  24. Fukegawa D, Hayakawa S, Yoshida Y, Suzuki K, Osaka A, Van Meerbeek B (2006) Chemical interaction of phosphoric acid ester with hydroxyapatite. J Dent Res 85:941–944

    Article  PubMed  CAS  Google Scholar 

  25. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B (2007) Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28:3757–3785

    Article  PubMed  Google Scholar 

  26. Brulat N, Rocca JP, Leforestier E, Fiorucci G, Nammour S, Bertrand MF (2008) Shear bond strength of self-etching adhesive systems to Er:YAG-laser-prepared dentin. Lasers Med Sci 24:53–57

    Article  Google Scholar 

  27. De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, Van Meerbeek B (2005) Critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res 84:118–132

    Article  PubMed  Google Scholar 

  28. Tay FR, Pashley DH, Yoshiyama M (2002) Two modes of nanoleakage expression in single-step adhesives. J Dent Res 81:472–476

    Article  PubMed  CAS  Google Scholar 

  29. Tay FR, King NM, Chan KM, Pashley DH (2002) How can nanoleakage occur in self-etching adhesive systems that demineralize and infiltrate simultaneously? J Adhes Dent 4:255–269

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Giannini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, M.T., Reis, A.F., Arrais, C.A.G. et al. Analysis of the interfacial micromorphology and bond strength of adhesive systems to Er:YAG laser-irradiated dentin. Lasers Med Sci 28, 1069–1076 (2013). https://doi.org/10.1007/s10103-012-1157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1157-5

Keywords

Navigation