Skip to main content
Log in

Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatments

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In this work, we numerically investigated nanoparticle-assisted laser-induced interstitial thermotherapy for tumor/cancer treatments. The goal of the study was to investigate the therapeutic effects of treatment conditions including laser wavelength, power, exposure time, concentrations of tailored nanoparticles, and optical/thermal properties of the tissue that is under treatment. It was found that using absorbing preferential nanoparticles as the photothermal agent weakens fluence rate distributions in terms of lowering fluence rate peaks and reducing laser penetration depths. However, the local enhancement in laser photon absorption induced by nanoparticles is so significant that the reduced fluence rate will be balanced out, and the eventual medical hyperthermia is greatly prompted by using nanoparticles. Also, the results of numerical simulations indicated that with constant laser illumination, an increase in nanoparticle concentration beyond a certain range has only an insignificant impact on hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

C abs :

Absorption cross section

C sca :

Scattering cross section

c :

Specific heat of tissue

g :

Anisotropy factor

h :

Convection coefficient

i :

Index of discrete ordinate direction

i′:

Index of discrete ordinate direction

k :

Coefficient of heat conductivity

k a :

Overall absorption coefficient

k np :

Absorption coefficient of nanoparticles

k t :

Absorption coefficient of the tissue

L c :

Remnant of collimation irradiance

L d :

Diffusion radiant intensity

N :

Number of discrete ordinate directions

n :

Surface normal vector

Q abs :

Absorption efficiency

Q s :

Bio-heat energy generated from photon energy

Q sca :

Scattering efficiency

Q 0 :

Total laser photon flux

R d :

Reflectivity of tissue

r :

Radial distance

r :

Radial distance vector

S c :

Source term induced by collimation

s :

Direction vector

s′:

Direction vector

s c :

Direction of collimated light

T :

Tissue temperature

\( {T_\infty } \) :

environment temperature

w,w′:

Quadrature weights

z :

Axial distance

α :

Term coefficient

δ :

Mean-free path of laser penetration

μ, η, ξ:

Directional cosines

v B :

Blood perfusion rate

ρ :

Density of tissue

θ :

Polar angle

ψ :

Azimuthal angle

Φ:

Phase function

σs :

Scattering coefficient

Ψ:

Fluence rate

ω,ω′:

Solid angle

References

  1. Chen WR, Adams RL, Higgins AK, Bartels KE, Nordquist RE (1996) Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study. Cancer Lett 98(2):169–173

    CAS  PubMed  Google Scholar 

  2. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032

    Article  CAS  PubMed  Google Scholar 

  3. Zharov VP, Galitovsky V, Viegas M (2003) Photothermal detection of local thermal effects during selective nanophoto-thermolysis with nanoparticles. Appl Phys Lett 83(24):4897–4899

    Article  CAS  Google Scholar 

  4. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:309–315

    Article  Google Scholar 

  5. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermia effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S (2006) Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 17:4431–4435

    Article  CAS  Google Scholar 

  7. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  PubMed  Google Scholar 

  8. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci 100(23):13549–13554

    Article  CAS  Google Scholar 

  9. Loo C, Lin A, Hirsch L, Lee M, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40

    CAS  PubMed  Google Scholar 

  10. O’Neal DP, Hirsch LR, Halas NJ (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    Article  PubMed  Google Scholar 

  11. Loo C, Lowery A, Halas NJ, West JL, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  CAS  PubMed  Google Scholar 

  12. Shi Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Nat Acad Sci 102(33):11600–11605

    Article  Google Scholar 

  13. Chen J, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li X, Xie Y (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17:2255–2261

    Article  CAS  Google Scholar 

  14. Hu M, Petrova H, Chen J, McLellan JM, Siekkinen AR, Marquez M, Li X, Xia Y, Hartland GV (2006) Ultrafast laser studies of the photothermal properties of gold nanocages. J Phys Chem B 110(4):1520–1524

    Article  CAS  PubMed  Google Scholar 

  15. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  PubMed  Google Scholar 

  16. Khan JA, Pillai B, Das TK, Singh Y, Maiti S (2007) Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem 8:1237–1240

    Article  CAS  PubMed  Google Scholar 

  17. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  CAS  PubMed  Google Scholar 

  18. Katz E, Willner I (2004) Integrated nanoparticle – biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  19. Xu X, Meade A, Bayazitoglu Y (2010) Fluence rate distribution in laser-induced interstitial thermotherapy by meshfree collocation. Int J Heat Mass Tran 53:4017–4022

    Article  Google Scholar 

  20. Feng Y, Rylander MN, Bass J, Oden JT, Diller K (2005) Optimal design of laser surgery for cancer treatment through nanoparticle-mediated hyperthermia therapy. NSTI-Nanotech 1:39–42

    Article  CAS  Google Scholar 

  21. Feng Y, Fuentes D, Hawkins A, Bass J, Rylander MN, Eillot A, Shetty A, Stafford RJ, Oden JT (2009) Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng Comput 25:3–13

    Article  PubMed  Google Scholar 

  22. Tjahjono I, Bayazitoglu Y (2008) Near-Infrared light heating of a slab by embedded nanoparticles. Int J Heat Mass Tran 51:1505–1515

    Article  Google Scholar 

  23. Vera J, Bayazitoglu Y (2009) Gold nanoshell density variation with laser power for induced hyperthermia. Int J Heat Mass Tran 52:564–573

    Article  CAS  Google Scholar 

  24. Vera J, Bayazitoglu Y (2009) A note on laser penetration in nanoshell deposited tissue. Int J Heat Mass Tran 52(13/14):3402–3406

    Article  CAS  Google Scholar 

  25. Eillot AM, Schwartz JS, Wang J, Shetty AM, Bougoyne C, O’Neal D, Hazle J, Stafford RJ (2009) Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating. Med Phys 36(4):1351–1358

    Article  Google Scholar 

  26. Bayazitoglu Y (2009) Nanoshell-assisted cancer thermal therapy: numerical simulations. Proc 2nd ASME Micro/Nanoscale Heat & Mass Transfer: An International Conference, Shanghai

  27. Masters A, Bown SG (1990) Interstitial laser hyperthermia in the treatment of tumors. Lasers Med Sci 5:129–136

    Article  Google Scholar 

  28. Muller G, Wolf J, Fobbe F, Bose-Landgraf J, Germer C, Beuthan J, Roggan A (1992) Interstitial laser hyperthermia: a new method to treat tumors. Photodynamic therapy and biomedical lasers: 406, edited by Spinelli P, Dal-Fante M, Marchesini R, Excerpta Medica, New York

  29. Muller G, Roggan A (1995) Laser-induced interstitial thermotherapy. SPIE Optical Engineering Press, Bellingham, pp 83–189

    Google Scholar 

  30. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Ann Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  31. Welch AJ, Gardner C (2002) Optical and thermal response of tissue to laser radiation. Lasers in medicine: 27-45, edited by Waynant RW, CRC Press

  32. Jacques SG, Chandrasekar S (1990) Radiative transfer. Oxford University Press, London, England

    Google Scholar 

  33. Ishimaru A (1978) Wave propagation and scattering in random medium. Academic Press, New York

    Google Scholar 

  34. Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophys J 93:70–83

    Article  Google Scholar 

  35. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys Leipzig, 330:377–445

    Article  Google Scholar 

  36. Prashant KJ, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible in part through support from the John and Ann Doerr Fund for Computational Biomedicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildiz Bayazitoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Meade, A. & Bayazitoglu, Y. Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatments. Lasers Med Sci 26, 213–222 (2011). https://doi.org/10.1007/s10103-010-0828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-010-0828-3

Keywords

Navigation