Skip to main content

Advertisement

Log in

Coordination of bioenergy supply chains under government incentive policies: a game-theoretic analysis

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Biomass as an abundant renewable energy source can play a vital role in controlling the greenhouse gas emissions. The distributed nature of biomass and its low energy density have complicated the utilization of this cheap and available source of energy. Governments can stimulate the bioenergy industry and remove barriers for adoption of bioenergy by implementing supporting regulations and incentives. In this paper, two types of government incentives, representing direct and indirect incentives, are analyzed and their efficiencies in fostering bioenergy generation are compared. A Stackelberg (leader–follower) game is proposed to formulate the integration of incentives as a bi-level problem in coordination of biomass supply chains. We further illustrate the applicability of the proposed approach through an empirical case study of three Canadian remote communities. The case study demonstrates the effects of incentives on coordination of biomass suppliers and end-user communities and promoting bioenergy share in electricity generation mix of communities. The findings of this study highlight the importance of government’s support, in form of indirect incentives, for provisioning of infrastructure needed for biomass supply and conversion, with a significant impact on increasing the share of bioenergy generation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author upon request.

Code availability

Not applicable.

References

  • Antar M, Lyu D, Nazari M, Shah A, Zhou X, Smith D (2021) Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew Sustain Energy Rev 139:110691

    Article  CAS  Google Scholar 

  • Azevedo S, Sequeira T, Santos M, Mendes L (2019) Biomass-related sustainability: a review of the literature and interpretive structural modeling. Energ 171:1107–1125

    Article  Google Scholar 

  • Bai Y, Ouyang Y, Pang J (2013) Biofuel supply chain design under competitive agricultural land use and feedstock. Energy Economics 34:1623–1633

    Article  Google Scholar 

  • Ben-Ayed O, Blair O (1990) Computational difficulties of bilevel linear programming. Oper Res 38:556–560

    Article  Google Scholar 

  • Cachon G (2003) Supply chain coordination with contracts. In: Handbooks in operations research and management science: supply. Philadelphia

  • Cachon G, Lariviere M (2000) Supply chain coordination with revenuesharing contracts: strengths and limitations. Operations Information and Decision Papers, Philadelphia

    Google Scholar 

  • Chakraborty T, Chauhan S, Vidyarthi N (2015) Coordination and competition in a common retailer channel: wholesale price versus revenue-sharing mechanisms. Int J Prod Econ 166:103–118

    Article  Google Scholar 

  • Chebotareva G, Strielkowski W, Streimikiene D (2020) Risk assessment in renewable energy projects: a case of Russia. J Clean Prod 269:1–12

    Article  Google Scholar 

  • Ericsson K, Huttunen S, Nilsson L, Svenningsson P (2004) Bioenergy policy and market development in Finland and Sweden. Energy Policy 32:1707–1721

    Article  Google Scholar 

  • Esmaeili F, Mafakheri F, Nasiri F (2023) Biomass supply chain resilience: integrating demand and availability predictions into routing decisions using machine learning Smart Science. https://doi.org/10.1080/23080477.2023.2176749

  • Gao E, Sowlati T, Akhtari S (2019) Profit allocation in collaborative bioenergy and biofuel supply chains. Energy 9:1–13

    Google Scholar 

  • Ghani N, Vogiatzisc C, Szmerekovsky J (2018) Biomass feedstock supply chain network design with biomass conversion incentives. Energy Policy 116:39–49

    Article  Google Scholar 

  • Giri R, Mondal S, Maiti M (2019) Government intervention on a competing supply chain with two green manufacturers and a retailer. Comput Ind Eng 128:104–121

    Article  Google Scholar 

  • Hafezalkotob A (2018) Direct and indirect intervention schemas of government in the competition between green and non-green supply chains. J Clean Prod 170:753–772

    Article  Google Scholar 

  • Igliński B, Piechota G, Buczkowski R (2015) Development of biomass in polish energy sector: an overview. Clean Technol Environ Policy 17:317–329

    Article  Google Scholar 

  • Karimi H, Ekşioğlu S, Khademi A (2018) Analyzing tax incentives for producing renewable energy by biomass cofiring. IISE Transactions 50(4):332–344

    Article  Google Scholar 

  • Lv Y, Hu T, Wang G, Wan Z (2008) A neural network approach for solving nonlinear bilevel programming problem. Comput Math Appl 55:2823–2829

    Article  Google Scholar 

  • Mafakheri F, Nasiri F (2013) Revenue sharing coordination in reverse logistics. J Clean Prod 59:185–196

    Article  Google Scholar 

  • Mafakheri F, Nasiri F (2014) Modeling of biomass-to-energy supply chain operations: applications, challenges and research directions. Energy Policy 67:116–126

    Article  Google Scholar 

  • Mafakheri F, Adebanjo D, Genus A (2020) Coordinating biomass supply chains for remote communities: a comparative analysis of non-cooperative and cooperative scenarios. Int J Prod Res 15:4615

    Google Scholar 

  • Masud M, Ananno A, Arefin A, Ahamed R, Das P, Joardder M (2019) Perspective of biomass energy conversion in Bangladesh. Clean Technol Environ Policy 21:719–731

    Article  Google Scholar 

  • Mupondwa E, Li X, Tabil L, Sokhansanj S, Adapa P (2017) Status of Canada’s lignocellulosic ethanol: Part II: hydrolysis and fermentation technologies. Renew Sustain Energy Rev 79:1535–1555

    Article  CAS  Google Scholar 

  • Nasiri F, Zaccour G (2009) An exploratory game-theoretic analysis of biomass electricity generation. Energy Policy 37:4514–4522

    Article  Google Scholar 

  • Nasiri F, Manuilova A, Huang G (2009) Environmental policy analysis in freight transportation planning: an optimality assessment approach. Int J Sustain Transp 3(2):88–109

    Article  Google Scholar 

  • Nielsen I, Majumder S, Sana S, Saha S (2019) Comparative analysis of government incentives and game structures on single and two-period green supply chain. J Clean Prod 235:1371–1398

    Article  Google Scholar 

  • Ohimain E (2013) A review of the Nigerian biofuel policy and incentives. Renew Sustain Energy Rev 22:246–256

    Article  Google Scholar 

  • Pablo-Romero M, Sanchez-Braza A, Perez M (2013) Incentives to promote solar thermal energy in Spain. Renew Sustain Energy Rev 22:198–208

    Article  Google Scholar 

  • Peksa-Blanchard M, Dolzan P, Grassi A, Heinimo J, Junginger M, Ranta T, Walter A (2007) Global wood pellets markets and industry: policy drivers, market status and raw material potential. IEA Bioenergy Task 40

  • Philibert C (2011) Interactions of Policies for Renewable Energy and Climate. International Energy Agency, Paris

    Google Scholar 

  • Sameeroddin M, Deshmukh M, Viswa G, Abdul Sattar M (2021) Renewable energy: Fuel from biomass, production of ethanol from various sustainable sources by fermentation process.

  • Seo MW, Lee SH, Nam H, Lee D, Tokmurzin D, Wang S, Park YK (2022) Recent advances of thermochemical conversion processes for biorefinery. Biores Technol 343:126109

    Article  CAS  Google Scholar 

  • Simsek H, Simsek N (2013) Recent incentives for renewable energy in Turkey. Energy Policy 63:521–530

    Article  Google Scholar 

  • Sinha A, Malo P, Frantsev A, Deb K (2013) Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm. Comput Oper Res 41:374

    Article  Google Scholar 

  • Stackelberg H, Bazin D, Hill R, Urch L (2010) Market structure and equilibrium. Springer, New York

    Google Scholar 

  • Stephen J, Mabee W, Pribowo A, Pledger S, Hart R, Tallio S, Bull G (2016) Biomass for residential and commercial heating in a remote Canadian aboriginal community. Renew Energy 86:563–575

    Article  Google Scholar 

  • Vazifeh Z, Mafakheri F, An C (2021) Biomass supply chain coordination for remote communities: a game-theoretic modeling and analysis approach. Sustain Cities Soc 69:102819

    Article  Google Scholar 

  • Vazifeh Z, Bensebaa F, Shadbahr J, Gonzales-Calienes G, Mafakheri F, Benali M, Ebadian M, Vézina P (2023) Forestry based products as climate change solution: Integrating life cycle assessment with techno-economic analysis. J Environ Manage 330:117197

    Article  Google Scholar 

  • Wang L, Watanabe T (2016) A Stackelberg game theoretic analysis of incentive effects under perceived risk for china’s straw-based power plant supply chain. Energies 9(455):1–20

    Google Scholar 

  • Wu Q, Ren H, Gao W, Ren J (2017) Benefit allocation for distributed energy network participants applying game theory based solutions. Energy 119:384–391

    Article  Google Scholar 

  • Yue D, You F (2014) Game-theoretic modeling and optimization of multi-echelon supply. Comput Chem Eng 71:347–361

    Article  CAS  Google Scholar 

  • Yue D, You F (2017) Stackelberg-game-based modeling and optimization for supply chain. Comput Chem Eng 102:81–95

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to the editor and three anonymous reviewers for their valuable comments and suggestions that were very much helpful in improving the quality of this manuscript.

Funding

The authors acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada (Grant RGPIN-2019-07086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Mafakheri.

Ethics declarations

Conflict of interest

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The supply chain model incorporating a direct incentive scheme for communities is presented by Eqs. (9)–(24).

$${\text{Min}}\;F_{1} = \mathop \sum \limits_{j} \left\{ {\mathop \sum \limits_{t} \left[ {\left( {\left( {\mathop \sum \limits_{j} y_{kj}^{t} B_{kj}^{t} } \right) + (I_{j}^{t} \;a_{j} ) + \left( {LB_{j} \;z_{j}^{t} } \right) + \left( {LD_{j} (D_{j}^{t} - z_{j}^{t} } \right)} \right)} \right]} \right\}$$
(9)

Subject to:

$$I_{j}^{t} = I_{j}^{t - 1} + \mathop \sum \limits_{k} y_{kj}^{t - rp} - \frac{{z_{j}^{t} }}{{fc_{j} }},\;I_{j}^{0} = 0$$
(10)
$$z_{j}^{t} \le \min \;\left( {D_{j}^{t} ,\;Lf_{j} *Z_{j} *720} \right)$$
(11)
$$I_{j}^{t} \le Ib_{j}$$
(12)
$$y_{kj}^{t} ,I_{j}^{t} ,z_{j}^{t} \ge 0$$
(13)
$${\text{Max}}\;F_{2} = \mathop \sum \limits_{i} \left\{ {\mathop \sum \limits_{t} \left[ {\left( {\mathop \sum \limits_{k} X_{ik}^{t} (P_{ik}^{t} + ) - hs_{i} S_{i}^{ } - H_{i} IS_{i}^{t} - \mathop \sum \limits_{k} X_{ik}^{t} T_{ik} } \right)} \right]} \right\}$$
(14)
$$P_{ik}^{t} = P_{i}^{u} - \left( {P_{i}^{u} - P_{i}^{l} } \right)\frac{{X_{ik}^{t} }}{{S_{i}^{ } }}$$
(15)
$$IS_{i}^{t} = IS_{i}^{t - 1} + S_{i}^{ } - \mathop \sum \limits_{k} X_{ik}^{t} IS_{i}^{0} = 0$$
(16)
$$\mathop \sum \limits_{k} X_{ik}^{t} \le S_{i}^{ }$$
(17)
$$IS_{i}^{t} \le S_{i}^{ }$$
(18)
$$P_{ik}^{t} ,\;IS_{i}^{t} \ge 0$$
(19)
$${\text{Max}}\;F_{3} = \mathop \sum \limits_{k} \left\{ {\mathop \sum \limits_{t} \left[ {\left( {\mathop \sum \limits_{j} y_{kj}^{t} B_{kj}^{t} - \mathop \sum \limits_{i} X_{ik}^{t} P_{ik}^{t} - Hc_{k} h_{k}^{t} } \right)} \right] } \right\}$$
(20)
$$B_{kj}^{t} = B_{kj}^{u} - \left( {B_{kj}^{u} - B_{kj}^{l} } \right)\frac{{y_{kj}^{t - rp} }}{{h_{k}^{ } }}$$
(21)
$$h_{k}^{t} = h_{k}^{t - 1} + \mathop \sum \limits_{i} X_{ik}^{t - rs} - \mathop \sum \limits_{j} y_{kj}^{t} ,h_{k}^{0} = 0$$
(22)
$$h_{k}^{t} \le hk\left( k \right)$$
(23)
$$X_{ik}^{t} ,y_{kj}^{t} ,z_{j}^{t} \ge 0\;\left( {{\text{Decision}}\;{\text{Variables}}} \right)$$
(24)

Equations (9)–(13) are representing the optimization problem of communities, which are the leader of the game. To formulate the problem as a bi-level problem, the optimization problem of the suppliers (Eqs. 1419) and hubs (Eqs. 2024) is considered as the constraints of the leaders' problem. To formulate hubs’ direct incentive scenario, Eq. (20) is replaced by Eq. (5), and in case of suppliers’ direct incentive scenario, Eq. (14) is replaced by Eq. (3).

Appendix 2

Table of symbols and nomenclatures.

Symbols

Definitions

Units

Sets

i

Set of suppliers

 

k

Set of hubs

 

j

Set of energy convertor facilities

 

t

Time periods

 

Parameters

\({\varvec{T}}_{{{\varvec{ik}}}}\)

Transportation cost from supplier ‘i’ to hub ‘k

$/kg

Si

Capacity of supplier ‘i

kg

\({\varvec{P}}_{{\varvec{i}}}^{{\varvec{u}}}\)

Biomass price of supplier ‘i’ without discount

$/kg

\({\varvec{P}}_{{\varvec{i}}}^{{\varvec{l}}}\)

Biomass price of supplier ‘i’ with discount

$/kg

\({\mathbf{hs}}_{{\varvec{i}}}\)

Biomass harvesting cost at supplier ‘i

$/kg

\({\mathbf{H}}_{{\varvec{i}}}\)

Holding cost for supplier ‘i

$/kg

\({\varvec{h}}_{{\varvec{k}}}^{\user2{ }}\) k

Capacity of hub ‘k

kg

\({\varvec{Hc}}_{{\varvec{k}}}\)

Holding cost at hub ‘k

$/kg

\({\varvec{B}}_{{{\varvec{kj}}}}^{{\varvec{u}}}\)

Biomass ordering cost from hub ‘k’ to energy convertor ‘j’ without discount

$/kg

\({\varvec{B}}_{{{\varvec{kj}}}}^{{\varvec{l}}}\)

Biomass ordering cost from hub ‘k’ to energy convertor ‘j’ with discount

$/kg

\({\varvec{Ib}}_{{\varvec{j}}}\)

Capacity of biomass inventory at energy convertor ‘j

kg

\({\varvec{a}}_{{\varvec{j}}}\)

Holding cost at energy convertor ‘j

$/kg

\({\varvec{fc}}_{{\varvec{j}}}\)

Conversion rate of biomass to electricity at energy convertor ‘j

kWh/kg

\({\varvec{Lf}}_{{\varvec{j}}}\)

Loading factor of energy convertor ‘j

%

\({\varvec{LB}}_{{\varvec{j}}}\)

Electricity generation cost from biomass

$/kWh

\({\varvec{LD}}_{{\varvec{j}}}\)

Electricity generation cost from diesel

$/kWh

\({\varvec{D}}_{{\varvec{j}}}^{{\varvec{t}}}\)

Demand in energy convertor ‘j’ at time t

kWh

\({\varvec{Z}}_{{\varvec{j}}}\)

Capacity of electricity generation

kW

\({\varvec{rs}}\)

Delivery time between supplier ‘i’ and hub ‘k

Month

\({\varvec{rp}}\)

Delivery time between hub ‘k’ and energy convertor ‘j

Month

γ

Government subsidy's rate to suppliers

$/kg

\({\varvec{\gamma}}_{{\varvec{i}}}^{{\varvec{t}}}\)

Government subsidy’s rate to supplier ‘i’ at time ‘t

$/kg

\(\overline{\gamma }_{{\varvec{i}}}\)

Average government subsidy’s rate to supplier ‘i

 $/kWh

β

Government subsidy’s rate to hubs

$/kg

\({\varvec{\beta}}_{{\varvec{k}}}^{{\varvec{t}}}\)

Government subsidy’s rate to hub ‘k’ at time ‘t

$/kg

\(\overline{{\varvec{\beta}}}_{{\varvec{k}}}\)

Average government subsidy’s rate to hub ‘k

 $/kWh

λ

Government subsidy’s rate to communities

$/kWh

\({\varvec{\lambda}}_{{\varvec{j}}}^{{\varvec{t}}}\)

Government subsidy’s rate to community ‘j’ at time ‘t

$/kWh

\(\overline{{\varvec{\lambda}}}_{{\varvec{j}}}\)

Average government subsidy’s rate to community ‘j

$/kWh

Decision variables

\({\varvec{X}}_{{{\varvec{ik}}}}^{{\varvec{t}}}\)

Quantity of biomass delivered from supplier ‘i’ to hub ‘k’ at time ‘t

kg

\({\varvec{y}}_{{{\varvec{kj}}}}^{{\varvec{t}}}\)

Quantity of biomass delivered from hub ‘k’ to energy convertor ‘j’ at time ‘t

kg

\({\varvec{IS}}_{{\varvec{i}}}^{{\varvec{t}}}\)

Biomass inventory level at supplier ‘i’ at time ‘t

kg

\({\varvec{h}}_{{\varvec{k}}}^{{\varvec{t}}}\)

Biomass inventory level at hub ‘k’ at time ‘t

kg

\({\varvec{P}}_{{{\varvec{ik}}}}^{{\varvec{t}}}\)

Biomass price offered by supplier ‘i’ to hub ‘k’ at time ‘t

$/kg

\({\varvec{B}}_{{{\varvec{kj}}}}^{{\varvec{t}}}\)

Biomass ordering price offered by hub ‘k’ to energy convertor ‘j’ at time ‘t

$/kg

\({\varvec{I}}_{{\varvec{j}}}^{{\varvec{t}}}\)

Biomass inventory level at energy convertor ‘j’ at time ‘t

kg

\({\varvec{z}}_{{\varvec{j}}}^{{\varvec{t}}}\)

Electricity generation from biomass in community ‘j’ at time ‘t

kWh

ς

Percentage of suppliers’ capacity increase

%

τ

Percentage of communities’ bioenergy generation capacity increase

%

Appendix 3

The equilibrium values of dynamic direct incentives with various levels of communities' incentivization (\(\lambda_{j}^{t}\)).

Time period (t)

λ = 0

λ = 0.01

λ = 0.02

λ = 0.03

λ = 0.04

λ = 0.05

j = 1

j = 2

j = 3

j = 1

j = 2

j = 3

j = 1

j = 2

j = 3

j = 1

j = 2

j = 3

j = 1

j = 2

j = 3

j = 1

j = 2

j = 3

1

0

0

0

0.01

0.01

0.01

0.02

0.02

0.02

0.03

0.03

0.03

0.04

0.04

0.04

0.05

0.05

0.05

2

0

0

0

0

0.0041

0

0

0.0083

0

0

0.0124

0

0

0.0166

0

0

0.0207

0

3

0

0

0

0

0.0005

0

0

0.0010

0

0

0.0015

0

0

0.0021

0

0

0.0026

0

4

0

0

0

0

0.0010

0

0

0.0021

0

0

0.0031

0

0

0.0041

0

0

0.0052

0

5

0

0

0

0

0.0010

0

0

0.0020

0

0

0.0029

0

0

0.0039

0

0

0.0049

0

6

0

0

0

0

0.0004

0

0

0.0008

0

0

0.0012

0

0

0.0015

0

0

0.0019

0

7

0

0

0

0

0.0009

0

0

0.0018

0

0

0.0028

0

0

0.0037

0

0

0.0046

0

8

0

0

0

0

0.0017

0

0

0.0033

0

0

0.0050

0

0

0.0067

0

0

0.0084

0

9

0

0

0

0

0.0025

0

0

0.0050

0

0

0.0076

0

0

0.0101

0

0

0.0126

0

10

0

0

0

0

0.0034

0

0

0.0069

0

0

0.0103

0

0

0.0137

0

0

0.0172

0

11

0

0

0

0

0.0028

0

0

0.0057

0

0

0.0085

0

0

0.0114

0

0

0.0142

0

12

0

0

0

0

0.0026

0

0

0.0052

0

0

0.0079

0

0

0.0105

0

0

0.0131

0

The equilibrium values of dynamic direct incentives with various levels of suppliers’ incentivization (\(\gamma_{i}^{t}\)).

Time period (t)

γ = 0.05

γ = 0.15

γ = 0.25

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.06

0.06

0.06

0.06

0.06

0.06

4

0.02

0.02

0.02

0.01

0.02

0.02

0.10

0.10

0.10

0.10

0.10

0.11

0.06

0.06

0.06

0.06

0.06

0.06

5

0.01

0.01

0.01

0.01

0.01

0.01

0

0

0

0

0

0

0

0

0

0

0

0

6

0

0

0

0

0

0

0

0

0

0

0

0

0.12

0.13

0.13

0.12

0.13

0.13

7

0.02

0.02

0.02

0.02

0.02

0.02

0.10

0.10

0.10

0.10

0.10

0.10

0.21

0.21

0.21

0.21

0.21

0.21

8

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.00

0.00

0.00

0.00

0.00

0.01

9

0

0

0

0

0

0

0

0

0

0

0

0

0.03

0.02

0.02

0.02

0.02

0.03

10

0.01

0.01

0.01

0.01

0.01

0.01

0.05

0.05

0.05

0.05

0.05

0.05

0.04

0.05

0.05

0.05

0.05

0.04

11

0.01

0.01

0.01

0.01

0.01

0.01

0.05

0.05

0.05

0.05

0.05

0.05

0.09

0.09

0.08

0.08

0.09

0.09

12

0.02

0.02

0.02

0.02

0.02

0.02

0.07

0.07

0.07

0.07

0.07

0.07

0.13

0.11

0.13

0.14

0.11

0.11

The equilibrium values of dynamic direct incentives with various levels of hubs' incentivization \((\beta_{k}^{t})\).

Time period (t)

β = 0

β = 0.05

β = 0.1

β = 0.15

β = 0.20

β = 0.25

k = 1

k = 2

k = 1

k = 2

k = 1

k = 2

k = 1

k = 2

k = 1

k = 2

k = 1

k = 2

1

0

0

0.05

0.05

0.1

0.1

0.15

0.15

0.2

0.2

0.25

0.25

2

0

0

0

0

0

0

0

0

0

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

5

0

0

0

0

0

0

0

0

0

0

0

0

6

0

0

0

0

0

0

0

0

0

0

0

0

7

0

0

0

0.0290

0

0.0598

0

0

0

0

0

0

8

0

0

0

0.05

0

0.0868

0

0.1086

0

0.1452

0

0

9

0

0

0

0.05

0

0.0912

0

0.15

0

0.2

0

0.0811

10

0

0

0

0.05

0

0.1

0

0.15

0

0.2

0

0.25

11

0

0

0.0130

0.05

0.0393

0.1

0

0.15

0

0.2

0.0017

0.25

12

0

0

0.0387

0.05

0.0721

0.1

0.1198

0.15

0.1598

0.2

0.25

0.25

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazifeh, Z., Mafakheri, F. & An, C. Coordination of bioenergy supply chains under government incentive policies: a game-theoretic analysis. Clean Techn Environ Policy 25, 2185–2201 (2023). https://doi.org/10.1007/s10098-023-02498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-023-02498-z

Keywords

Navigation