Skip to main content

Advertisement

Log in

Developing a wind energy potential map on a regional scale using GIS and multi-criteria decision methods: the case of Cadiz (south of Spain)

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This paper focuses on the combined use of geographical information systems and multi-criteria decision methods when developing a decision support model in order to determine the most favourable sites for the installation of wind turbines on a regional scale. This study differs from others in three ways: (1) it analyses two distinct scenarios (depending on whether major or minor constraints, as defined in the existing literature, are applied); (2) the area under study, Cadiz, already has an extensive network of wind-generating facilities; and (3) this study analyses at length areas where installation is not suitable. The methodology is proven to be a valid and appropriate tool for identifying potential areas for wind-energy facilities on a regional scale for both planners and investors. The model is proved to be useful for planning and evaluating phases: for example, it helps to outline criteria which can be used to define sectors where the number of suitable areas for wind-energy facilities can be increased, as well as locations where repowering might be a suitable alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Shabeeb AR, Al-Adamat R, Mashagbah A (2016) AHP with GIS for a preliminary site selection of wind turbines in the North West of Jordan. Int J Geosci 7:1208–1221. https://doi.org/10.4236/ijg.2016.710090

    Article  Google Scholar 

  • Al-Yahyai S, Charabi Y, Gastli A, Al-Badi A (2012) Wind farm land suitability indexing using multi-criteria analysis. Renew Energy 44:80–87. https://doi.org/10.1016/j.renene.2012.01.004

    Article  Google Scholar 

  • Angelis-Dimakis A, Biberacher M, Dominguez J et al (2011) Methods and tools to evaluate the availability of renewable energy sources. Renew Sustain Energy Rev 15(2):1182–1200. https://doi.org/10.1016/j.rser.2010.09.049

    Article  Google Scholar 

  • Aydin NY (2009) GIS-based site selection approach for wind and solar energy systems: a case study from western Turkey. Dissertation. Middle East Technical University

  • Aydin NY, Kentel E, Duzgun S (2010) GIS-based environmental assessment of wind energy systems for spatial planning: a case study from Western Turkey. Renew Sustain Energy Rev 14:364–373. https://doi.org/10.1016/j.rser.2009.07.023

    Article  Google Scholar 

  • Baban SMJ, Parry T (2001) Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renew Energy 24(1):59–71

    Article  Google Scholar 

  • Baris KB, Bahadir S, Ulucan A, Umur M (2015) A GIS-based multiple criteria decision analysis approach for wind power plant site selection. Util Policies 3:86–96. https://doi.org/10.1016/j.jup.2015.06.001

    Article  Google Scholar 

  • Bergström H, Alfredsson H, Arnqvist J et al (2013) Wind power in forests winds an effects on loads. Elforsk rapport 13:09. Stockholm

  • Busby R (2012) Wind power. The industry grows up. Penn Well Corporation, Oklahoma

    Google Scholar 

  • Choudhary D, Shankar R (2012) An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: a case study from India. Energy 42(1):510–521. https://doi.org/10.1016/j.energy.2012.03.010

    Article  Google Scholar 

  • Colmenar-Santos A, Campíñez-Romero S, Pérez-Molina C, Mur-Pérez F (2015) Repowering: an actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs. Renew Sustain Energy Rev 41:319–337. https://doi.org/10.1016/j.rser.2014.08.041

    Article  Google Scholar 

  • Council of Europe (2000) Convenio europeo del paisaje. Florencia: 20 de noviembre de 2000. http://conventions.coe.int/treaty/fr/Treaties/Html/176.html. Accessed 31 Jan 2018

  • de Lucas M, Janss GFE, Ferrer M (2007) Birds and wind farms: risk assessment and mitigation. Editorial Quercus, Madrid

    Google Scholar 

  • Díaz-Cuevas P (2013) Energía eólica y territorio. Potencialidades para la implantación de parques eólicos en Andalucía. Dissertation. University of Seville

  • Díaz-Cuevas P, Fernández A, Pita MF (2016) Energía eólica y paisaje. Identificación y cuantificación de paisajes afectados por instalaciones eólicas en Andalucía. B Asoc Geogr Esp 71:397–430

    Google Scholar 

  • Domínguez J, Amador J (2007) Geographical information systems applied in the field of the renewable energy sources. Comput Ind Eng 52:322–336. https://doi.org/10.1016/j.cie.2006.12.008

    Article  Google Scholar 

  • Domínguez-Bravo J (2002) La integración económica y territorial de las energías renovables y los sistemas de información geográfica. Dissertation. Universidad Complutense de Madrid

  • (EC) European Commission (2001) Communication from the commission on the precautionary principle. COM (2000) 1 final, Brussels

  • (EC) European Commission (2007a) An energy policy for Europe. COM (2007)1 final, Brussels

  • (EC) European Commission (2007b) Limiting global climate change to 2 C—the way ahead for 2020 and beyond. COM (2007) 2 final, Brussels

  • (EC) European Commission (2010) Europe 2020. A strategy for smart, sustainable and inclusive growth.COM (2010) 2020, Brussels

  • (EC) European Commission (2011a) A roadmap for moving to a competitive low carbon economy in 2050. COM (2011) 112 final, Brussels

  • (EC) European Commission (2011b) Energy roadmap 2050.COM (2011) 0885 final, Brussels

  • (EC) European Commission (2011c) White paper roadmap to a single European transport area—towards a competitive and resource efficient transport system COM (2011) 0144 final, Brussels

  • Effat AH (2014) Spatial modeling of optimum zones for wind farms using remote sensing and geographic information system, application in the Red Sea, Egypt. JGIS 6:358–374. https://doi.org/10.4236/jgis.2014.64032

    Article  Google Scholar 

  • Gorsevski PV, Cathcart S, Mirzaei G et al (2013) A group-based spatial decision support system for wind farm site selection in Northwest Ohio. Energy Policy 55:374–385. https://doi.org/10.1016/j.enpol.2012.12.013

    Article  Google Scholar 

  • Hansen HS (2005) GIS-based multi-criteria analysis of wind farm development. In: Hauska H, Tveite H (eds) ScanGIS’ 2005: proceedings of the 10th Scandinavian research conference on geographical information sciences, Stockholm, pp 75–87

  • Höfer T, Sunak Y, Siddique H, Madlener R (2014) Wind farm siting using a spatial analytic hierarchy process approach: a case study of the Städteregion Aachen, FCN Working Paper No. 16/2014, Institute for Future Energy Consumer Needs and Behavior, RWTH Aachen University

  • Hughes T (2000) Calculation of wind energy and power. Lesson number 2 in an Oklahoma Wind Power Tutorial Series

  • Izquierdo JM (2008) Energía eólica y territorio. Universidad de Sevilla y Consejería Obras Públicas y Transportes, Sevilla

    Google Scholar 

  • Janke JR (2010) Multicriteria GIS modeling of wind and solar farms in Colorado. Renew Energy 35:2228–2234. https://doi.org/10.1016/j.renene.2010.03.014

    Article  Google Scholar 

  • Kumar A, Sah B, Singh A et al (2017) A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew Sustain Energy Rev 69:596–609. https://doi.org/10.1016/j.rser.2016.11.191

    Article  Google Scholar 

  • Latinopoulos D, Kechagia K (2015) A GIS-based Multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew Energy 78:550–560. https://doi.org/10.1016/j.renene.2015.01.041

    Article  Google Scholar 

  • Lejeune P, Feltz C (2008) Development of a decision support system of setting up a wind energy policy across the Walloon Region (southern Belgium). Renew Energy 33:2416–2422. https://doi.org/10.1016/j.renene.2008.02.011

    Article  Google Scholar 

  • Ley 2/1989, de 18 de Julio, por la que se aprueba el Inventario de Espacios Naturales Protegidos de Andalucía, y se establecen medidas adicionales para su protección. Boletín Oficial de la Junta de Andalucía, 60, p 3367

  • Ley 4/1989, de 27 de marzo, de Conservación de los Espacios Naturales y de la Flora y Fauna Silvestre. Boletín Oficial del Estado, 74, p 8262 a 8269

  • Ley 8/2001, de 12 de julio, de carreteras de Andalucía. Boletín Oficial Junta de Andalucía, 85 pp 12.799

  • Ley 9/2006, de 26 de diciembre, de Servicios Ferroviarios de Andalucía. Boletín Oficial Junta de Andalucía, 251, pp 3

  • Lorente-Plazas R, Montávez JP, Jerez JJ et al (2012) EOLMAP: a web tool to assess the wind resource over Spain. RE&PQJ 1(10):1264–1269

    Article  Google Scholar 

  • Manwell JF, McGowan JG, Rogers AL (2009) Wind energy explained: theory, design and application, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Miller A, Li R (2014) A geospatial approach for prioritizing wind farm development in Northeast Nebraska, USA. Int J Geo-Inf 3:968–979. https://doi.org/10.3390/ijgi3030968

    Article  Google Scholar 

  • Noorollahi Y, Youseffi H, Mohammadi M (2016) Multi-criteria decision support system for wind farm site selection using GIS. Sustain Energy Technol Assess 13:38–50. https://doi.org/10.1016/j.seta.2015.11.007

    Article  Google Scholar 

  • Panagiotidou M, Xydis G, Koroneos C (2016) Environmental siting framework for wind farms: a case study in the Dodecanese Islands. Resources 5(3):1–25. https://doi.org/10.3390/resources5030024

    Article  Google Scholar 

  • Patel MR (1999) Wind and solar power systems: design, analysis and operation. Taylor and Francis, New York

    Google Scholar 

  • Prados MJ (2010) Renewable energy policy and landscape management in Andalusia, Spain: the facts. Energy Policy 8(11):6900–6909. https://doi.org/10.1016/j.enpol.2010.07.005

    Article  Google Scholar 

  • Bennui A, Rattanamanee P, Puetpaiboon, U, Phukpattaranont P, Chetpattananondh K (2007) Site selection for large wind turbines using GIS. In: PSU-UNS international conference on engineering and environment-ICEE-, Phuket, May 10–11

  • Ramírez-Rosado IJ, García-Garrido L, Fernández-Jiménez A et al (2008) Promotion of new wind farms based on a decision support system. Renewabl Energ 33:558–566. https://doi.org/10.1016/j.renene.2007.03.028

    Article  Google Scholar 

  • Resch B, Sagl G, Törnros T et al (2014) GIS-based planning and modeling for renewable energy: challenges and future research avenues. Int J Geo-Inf 3:662–692. https://doi.org/10.3390/ijgi3020662

    Article  Google Scholar 

  • Rodman L, Meentemeyer R (2006) A geographic analysis of wind turbine placement in Northern California. Energy Policy 34:2137–2149. https://doi.org/10.1016/j.enpol.2005.03.004

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. Mc Grawhill, New York

    Google Scholar 

  • Saaty TL (1989) Group decision making and the AHP. Springer, New York

    Book  Google Scholar 

  • Sadegui M, Karimi M (2017) GIS-based solar and wind turbine site selection using multi-criteria analysis: case study Tehran, Iran. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4

  • Sánchez-Lozano JM, García-Cascales MS, Lamat MT (2014) Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain. Energy 73:311–324. https://doi.org/10.1016/j.energy.2014.06.024

    Article  Google Scholar 

  • Sánchez-Lozano JM, García-Cascales MS, Lamata MT (2016) GIS-based onshore wind farm site selection using fuzzy multi-criteria decision making methods. Evaluating the case of Southeastern Spain. Appl Energy 17:86–102. https://doi.org/10.1016/j.apenergy.2016.03.030

    Article  Google Scholar 

  • Satking M, Noorollahi Y, Abbaspour M, Yousefi H (2014) Multi-criteria site selection model for wind-compressed air energy storage power plants. Renew Sustain Energy Rev 32:579–590. https://doi.org/10.1016/j.rser.2014.01.054

    Article  Google Scholar 

  • Schallenberg- Rodríguez J, Notario-del Pino J (2014) Evaluation of on-shore wind techno-economical potential in regions and islands. Appl Energy 124:117–129. https://doi.org/10.1016/j.apenergy.2014.02.050

    Article  Google Scholar 

  • Sliz-Szkliniarz B, Vogt J (2011) GIS-based approach for the evaluation of wind energy potential: a case study for the Kujawsko-Pomorskie Voivodeship. Renew Sustain Energy Rev 15:1696–1707. https://doi.org/10.1016/j.rser.2010.11.045

    Article  Google Scholar 

  • Söder L, Ackermann T (2012) Wind power in power systems: an introduction. In: Ackermann T (ed) Wind power in power systems, 2nd edn. Wiley, Chichester. https://doi.org/10.1002/9781119941842.ch4

    Chapter  Google Scholar 

  • Sunak Y, Höfer T, Siddique H et al (2015) A GIS-based decision support system for the optimal siting of wind farm projects. E.ON Energy Research Center Series and RWTH Aachen University, Aachen

    Google Scholar 

  • Szurek M, Blachowski J, Nowaka A (2014) GIS-based method for wind farm location multi-criteria analysisis. Min Sci 21:65–85. https://doi.org/10.5277/ms142106

    Article  Google Scholar 

  • Tegou L, Polatidis H, Haralambopoulos DA (2010) Environmental management framework for wind farm siting: methodology and case study. J Environ Manag 91:2134–2147. https://doi.org/10.1016/j.jenvman.2010.05.010

    Article  Google Scholar 

  • Uyan M (2017) Optimal site selection for solar plants using multi-criteria ecaluation: a case of study from the region in Karaman, Turkey. Clean Technol Environ Policy 19:2231–2244. https://doi.org/10.1007/s1009

    Article  CAS  Google Scholar 

  • van Haaren R, Fthenakis V (2011) GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): evaluating the case for New York State. Renew Sustain Energy Rev 15:3332–3340. https://doi.org/10.1016/j.rser.2011.04.010

    Article  Google Scholar 

  • Villacreses G, Gaona G, Martínez-Gómez J, Juan D (2017) Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: the case of continental Ecuador. Renew Energy 109:275–286. https://doi.org/10.1016/j.renene.2017.03.041

    Article  Google Scholar 

  • Voivontas D, Assimacopolous A, Corominas Mourelatos J (1998) Evaluation of renewable energy potential using a GIS decision support system. Renew Energy 3(13):333–344. https://doi.org/10.1016/S0960-1481(98)00006-8

    Article  Google Scholar 

  • Voogd H (1983) Multicriteria evaluation for urban and regional planning. Taylor & Francis, London

    Google Scholar 

  • Wu Y, Geng S (2014) Multi-criteria decision making on selection of solar wind hybrid power station location: a case of China. Energy Convers Manag 81:527–533. https://doi.org/10.1016/j.enconman.2014.02.056

    Article  Google Scholar 

  • Yazdani M, Chatterjee P, Kazimieras Zavadskas E, Streimikiene D (2018) A novel integrated decision making approach for the evaluation and selection of renewable energy technologies. Clean Technnol Environ Policy. https://doi.org/10.1007/s10098-018-1488-4

    Article  Google Scholar 

  • Yue CD, Wang SS (2006) GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy 34:730–742. https://doi.org/10.1016/j.enpol.2004.07.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Díaz-Cuevas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Cuevas, P., Biberacher, M., Domínguez-Bravo, J. et al. Developing a wind energy potential map on a regional scale using GIS and multi-criteria decision methods: the case of Cadiz (south of Spain). Clean Techn Environ Policy 20, 1167–1183 (2018). https://doi.org/10.1007/s10098-018-1539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1539-x

Keywords

Navigation