Skip to main content
Log in

Experimental investigation on the influence of the presence of alkali compounds on the performance of a commercial Pt–Pd/Al2O3 diesel oxidation catalyst

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Experimental investigation was conducted on the influence of the presence of alkali compounds such as K and Na present in biofuels on catalytic behaviors of a commercial diesel oxidation catalyst (Pt/Pd/Al2O3) in the monolith form. Doping of different alkali metal components on carrots of monolith was performed. These carrots were physicochemically characterized, and the catalytic tests consisted of series of temperature-programmed surface reactions with representative exhaust gas mixtures from diesel combustion. The aim of the present study is to reveal the effect of the alkali metal on overall catalytic activity of diesel oxidation catalyst (DOC) and more particularly to show their influence on the reactions involving CO, hydrocarbons, NO, and NO2. Potassium and sodium lead to different catalytic properties. A promotion effect was found in the presence of K, whereas an inhibiting effect was evidenced in the presence of Na or when both Na and K were doped onto the DOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersson J, Antonsson M, Eurenius L et al (2007) Deactivation of diesel oxidation catalysts: vehicle- and synthetic aging correlations. Appl Catal B 72:71–81

    Article  CAS  Google Scholar 

  • Auvray X, Olsson L (2015) Stability and activity of Pd-, Pt-and Pd–Pt catalysts supported on alumina for NO oxidation. Appl Catal B: Environ 168:342–352

    Article  Google Scholar 

  • Barbier J, Duprez D (1992) Hydrogen formation in propane oxidation on Pt–Rh/CeO2/Al2O3 catalysts. Appl Catal A 85:89–100

    Article  CAS  Google Scholar 

  • Barbier J, Duprez D (1994) Steam effects in three-way catalysis. Appl Catal B 4:105–140

    Article  CAS  Google Scholar 

  • Bart JM, Pentenero A, Prigent MF (1992) Experimental comparison among hydrocarbons and oxygenated compounds for their elimination by three-way automotive catalysts. In: Catalytic control of air pollution, ACS Symposium Series, vol 495. American Chemical Society, pp 42–60

  • Bulkowska K, Gusiatin ZM, Klimiuk E et al (2016) Biomass for Biofuels. CRC Press, Boca Raton

    Book  Google Scholar 

  • Chen Y, He J, Tian H et al (2014) Enhanced formaldehyde oxidation on Pt/MnO2 catalysts modified with alkali metal salts. J Colloid Interface Sci 428:1–7

    Article  CAS  Google Scholar 

  • Clerc JC (1996) Catalytic diesel exhaust aftertreatment. Appl Catal B: Environ 10:99–115

    Article  CAS  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33:1–18

    Article  CAS  Google Scholar 

  • EU-Commission (2003) Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. Official Journal of the European Union 5

  • Farrauto RJ, Voss KE (1996) Monolithic diesel oxidation catalysts. Appl Catal B 10:29–51

    Article  CAS  Google Scholar 

  • Filkin NC, Tikhov MS, Palermo A et al (1999) A kinetic and spectroscopic study of the in situ electrochemical promotion by sodium of the platinum-catalyzed combustion of propene. J Phys Chem A 103:2680–2687

    Article  CAS  Google Scholar 

  • Gálvez ME, Ascaso S, Moliner R et al (2013) Me (Cu Co, V)–K/Al2O3 supported catalysts for the simultaneous removal of soot and nitrogen oxides from diesel exhausts. Chem Eng Sci 87:75–90

    Article  Google Scholar 

  • Gálvez ME, Ascaso S, Stelmachowski P et al (2014) Influence of the surface potassium species in Fe–K/Al2O3 catalysts on the soot oxidation activity in the presence of NO x . Appl Catal B 152–153:88–98

    Article  Google Scholar 

  • Gandhi HS, Stepien H, Shelef M (1975) Optimization of ruthenium-containing, stabilized, nitric oxide reduction catalysts. Mater Res Bull 10:837–845

    Article  CAS  Google Scholar 

  • Gandhi H, Piken A, Stepien H et al (1977) SAE Technical Paper Series No. 770166. In: SAE Automotive Engineering Congress, Detroit, Michigan

  • Gandhi H, Graham G, McCabe RW (2003) Automotive exhaust catalysis. J Catal 216:433–442

    Article  CAS  Google Scholar 

  • Harrison B, Diwell A, Hallett C (1988) Promoting platinum metals by ceria. Platin Met Rev 32:73–83

    CAS  Google Scholar 

  • Heck RM, Farrauto RJ (2001) Automobile exhaust catalysts. Appl Catal A 221:443–457

    Article  CAS  Google Scholar 

  • Hegedus LL, Summers JC, Schlatter JC et al (1979) Poison-resistant catalysts for the simultaneous control of hydrocarbon, carbon monoxide, and nitrogen oxide emissions. J Catal 56:321–335

    Article  CAS  Google Scholar 

  • Irani K, Epling WS, Blint R (2009) Effect of hydrocarbon species on no oxidation over diesel oxidation catalysts. Appl Catal B 92:422–428

    Article  CAS  Google Scholar 

  • Jeong G, Oh Y (2006) Emission profile of rapeseed methyl ester and its blend in a diesel engine. Appl Biochem Biotechnol 129:165–178

    Article  Google Scholar 

  • Jeong G, Park D, Kang C et al (2004) Production of biodiesel fuel by transesterification of rapeseed oil. Appl Biochem Biotechnol 114:747–758

    Article  Google Scholar 

  • Khosravi M, Abedi A, Hayes RE et al (2014) Kinetic modelling of Pt and Pt: Pd diesel oxidation catalysts. Appl Catal B 154–155:16–26

    Article  Google Scholar 

  • Konsolakis M, Yentekakis IV (2007) NO reduction by propene or CO over alkali-promoted Pd/YSZ catalysts. J Hazard Mater 149:619–624

    Article  CAS  Google Scholar 

  • Koukiou S, Konsolakis M, Lambert RM et al (2007) Spectroscopic evidence for the mode of action of alkali promoters in Pt-catalyzed de-NO x chemistry. Appl Catal B 76:101–106

    Article  CAS  Google Scholar 

  • Kummer J (1986) Use of noble metals in automobile exhaust catalysts. J Phys Chem 90:4747–4752

    Article  CAS  Google Scholar 

  • Lang W, Laing P, Cheng Y et al (2017) Co-oxidation of CO and propylene on Pd/CeO2–ZrO2 and Pd/Al2O3 monolith catalysts: a light-off, kinetics, and mechanistic study. Appl Catal B 218:430–442

    Article  CAS  Google Scholar 

  • Manigrasso A, Darcy P, Da Costa P (2012) Hysteresis effect study on diesel oxidation catalyst for a better efficiency of SCR systems. Catal Today 191(1):52–58

    Article  CAS  Google Scholar 

  • Millet C, Chedotal R, Da Costa P (2009) Synthetic gas bench study of a 4-way catalytic converter: catalytic oxidation, NO x storage/reduction and impact of soot loading and regeneration. Appl Catal B 90:339–346

    Article  CAS  Google Scholar 

  • Milt VG, Peralta MA, Ulla MA et al (2007) Soot oxidation on a catalytic NO x trap: beneficial effect of the Ba–K interaction on the sulfated Ba, K/CeO2 catalyst. Catal Commun 8:765–769

    Article  CAS  Google Scholar 

  • Russell A, Epling WS (2011) Diesel oxidation catalysts. Catal Rev 53:337–423

    Article  CAS  Google Scholar 

  • Schlatter JC (1978) Water-gas shift and steam reforming reactions over a rhodium three-way catalyst. SAE Tech Paper. doi:10.4271/780199

    Google Scholar 

  • Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38:6977–6988

    Article  Google Scholar 

  • Twigg MV (2006) Roles of catalytic oxidation in control of vehicle exhaust emissions. Catal Today 117:407–418

    Article  CAS  Google Scholar 

  • Vernoux P, Leinekugel-Le-Cocq AY, Gaillard F (2003) Effect of the addition of Na to Pt/Al2O3 catalysts for the reduction of NO by C3H8 and C3H6 under lean-burn conditions. J Catal 219:247–257

    Article  CAS  Google Scholar 

  • Voss K, Yavuz B, Hirt C, Farrauto R (1994) Performance characteristics of a novel diesel oxidation catalyst. SAE Technical Paper 940239. doi:10.4271/940239

  • Webster D (2001) 25 years of catalytic automotive pollution control: a collaborative effort. Top Catal 16:33–38

    Article  Google Scholar 

  • Wu F, Wei H (2014) Alkaline compound ionic liquid and biodiesel preparation method. World Patent WO/2014/063581, 1 May 2014

  • Xie J, Rodrigues E, Furtado N, Matynia A, Arlt T, Rodatz P, Da Costa P (2016) Ageing of commercial diesel oxidation catalysts: a structure/reactivity preliminary study. Top Catal 59:1039–1043. doi:10.1007/s11244-016-0586-y

    Article  CAS  Google Scholar 

  • Xue J, Grift TE, Hansen AC (2011) Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev 15:1098–1116

    Article  CAS  Google Scholar 

  • Yentekakis I, Lambert R, Konsolakis M et al (1998) The effect of sodium on the Pd-catalyzed reduction of NO by methane. Appl Catal B 18:293–305

    Article  CAS  Google Scholar 

  • Yentekakis IV, Konsolakis M, Lambert RM et al (1999) Extraordinarily effective promotion by sodium in emission control catalysis: NO reduction by propene over Na-promoted Pt/γ-Al2O3. Appl Catal B 22:123–133

    Article  CAS  Google Scholar 

  • Yentekakis IV, Tellou V, Botzolaki G et al (2005) A comparative study of the C3H6 + NO + O2, C3H6 + O2 and NO + O2 reactions in excess oxygen over Na-modified Pt/γ-Al2O3 catalysts. Appl Catal B 56:229–239

    Article  CAS  Google Scholar 

  • Zheng M, Mulenga MC, Reader GT et al (2008) Biodiesel engine performance and emissions in low temperature combustion. Fuel 87:714–722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Continental AG for providing the commercial catalysts. Thanks are also due to China Scholarship Council for financial support of Y. Xie’s Ph.D. Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Da Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Galvez, M.E., Matynia, A. et al. Experimental investigation on the influence of the presence of alkali compounds on the performance of a commercial Pt–Pd/Al2O3 diesel oxidation catalyst. Clean Techn Environ Policy 20, 715–725 (2018). https://doi.org/10.1007/s10098-017-1412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-017-1412-3

Keywords

Navigation