Skip to main content

Advertisement

Log in

Optimum lipid production using agro-industrial wastewater treated microalgae as biofuel substrate

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Abundant wastewater discharges from palm oil industries in tropical nations being a valuable resource of biodiesel need proper exploration. Research hinted that such wastewater as economical nutrient source or substrate can support the cultivation of microalgae. In this experiment, we have tested the growth and lipid production of five different microalgal strains in palm oil mill effluent (POME). POME as a biofuel substrate is demonstrated to be lucrative for microalgae-assisted lipids production. POME is rich in macro- and micronutrients can be used as a growth medium for algal growth in order to reduce the growth medium cost and environmental pollutions. Among the five microalgal strains tested, Chlorella sorokiniana revealed optimum biomass and lipid production. The productivity was evaluated in terms of chlorophyll content, growth rate, biomass, and lipid content, which discerned to be 0.099/day, 8.0 mg/L day and 2.68 mg/mg cell dry weight (CDW). Furthermore, in this study, an optimization study was carried out to enhance the microalgae to produce high lipid content using carbon-to-nitrogen ratio and different light/dark periods. The presence of nitrogen combined glucose (with a carbon-to-nitrogen ratio 100:7) as an alternative source to carbon displayed higher lipid production of 2.68 (mg/mg CDW) by C. sorokiniana. This study confirms that 8:16 h light/dark condition at C:TN ratio of 100:7 supported to produce high lipid content of 17 mg lipid/mg CDW. The above results revealed that POME could be a suitable growth media for the alga C. sorokiniana to improve the maximum lipid yield for biofuels production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Avagyan AB (2011) Water global recourse management through the use of microalgae addressed to sustainable development. Clean Technol Environ Policy 13(3):431–445

    Article  Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry, and biotechnology, 1st edn. CRC Press Taylor & Francis Group, New York

    Google Scholar 

  • Basha SA, Gopal KR, Jebaraj S (2009) A review on biodiesel production, combustion, emissions and performance. Renew Sustain Energy Rev 13(6):1628–1634

    Article  CAS  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101(13):4767–4774

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48(6):1146–1151

    Article  CAS  Google Scholar 

  • Din MFM, Ponraj M, Van Loosdrecht M, Ujang Z, Chelliapan S, Zambare V (2014) Utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. Int J Environ Sci Technol 11(3):671–684

    Article  Google Scholar 

  • Ding GT, Yaakob Z, Takriff MS, Salihon J, Rahaman MSA (2016) Biomass production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp in palm oil mill effluent (POME). Int J Hydrog Energy 41(8):4888–4895

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642

    Article  CAS  Google Scholar 

  • Federation WE, American Public Health Association (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington

    Google Scholar 

  • Griffiths M, Harrison SL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Gurram RN, Al-Shannag M, Lecher NJ, Duncan SM, Singsaas EL, Alkasrawi M (2015) Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. Bioresour Technol 192:529–539

    Article  CAS  Google Scholar 

  • Gurram R, Al-Shannag M, Knapp S, Das T, Singsaas E, Alkasrawi M (2016) Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock. Clean Technol Environ Policy 18(1):269–278

    Article  CAS  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203

    CAS  Google Scholar 

  • Hernández D, Riaño B, Coca M, Solana M, Bertucco A, García-González M (2016) Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J 285:449–458

    Article  Google Scholar 

  • Hosseini SE, Wahid MA (2012) Necessity of biodiesel utilization as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 16:5732–5740. doi:10.1016/j.rser.2012.05.025

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Jacob-Lopes E, Revah S, Hernández S, Shirai K, Franco TT (2009) Development of operational strategies to remove carbon dioxide in photobioreactors. Chem Eng J 153(1):120–126

    Article  CAS  Google Scholar 

  • Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 88(1):17–25

    Article  CAS  Google Scholar 

  • Kamarudin KF, Tao DG, Yaakob Z, Takriff MS, Rahaman MSA, Salihon J (2015) A review on wastewater treatment and microalgal by-product production with a prospect of palm oil mill effluent (POME) utilization for algae. Der Pharm Chem 7:73–89

    CAS  Google Scholar 

  • Kamyab H, Md Din MF, Lee CT, Ponraj M, Soltani M, Eva S (2014a) Micro-macro algal mixture as a promising agent for treating POME discharge and its potential use as animal feed stock enhancer. J Teknol 68(5):1–4

    Google Scholar 

  • Kamyab H, Lee CT, Md Din MF, Ponraj M, Mohamad SE, Sohrabi M (2014b) Effects of nitrogen source on enhancing growth conditions of green algae to produce higher lipid. Desalin Water Treat 52:3579–3584

    Article  CAS  Google Scholar 

  • Kamyab H, Md Din MF, Keyvanfar A, Abd Majid MZ, Talaiekhozani A, Shafaghat A, Lee CT, Lim JS, Ismail HH (2015a) Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Proc 75:2400–2408

    Article  CAS  Google Scholar 

  • Kamyab H, Md Din MF, Lee CT, Keyvanfar A, Shafaghat A, Abd Majid MZ, Ponraj M, Xiao Yun T (2015b) Lipid production by microalgae Chlorella pyrenoidosa cultivated in palm oil mill effluent (POME) using hybrid photo bioreactor (HPBR). Desalin Water Treat 55:3737–3749

    Article  CAS  Google Scholar 

  • Kamyab H, Md Din MF, Ghoshal SK, Lee CT, Keyvanfar A, Bavafa AA, Lim JS (2016) Chlorella pyrenoidosa mediated lipid production using Malaysian agricultural wastewater: effects of photon and carbon. Waste Biomass Valoriz. doi:10.1007/s12649-016-9556-7

    Google Scholar 

  • Keskin A, Gürü M, Altiparmak D, Aydin K (2008) Using of cotton oil soapstock biodiesel–diesel fuel blends as an alternative diesel fuel. Renew Energy 33(4):553–557

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375

    Article  Google Scholar 

  • Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnol Adv 29:124–141

    Article  CAS  Google Scholar 

  • Lean HH, Smyth R (2014) Disaggregated energy demand by fuel type and economic growth in Malaysia. Appl Energy 132:168–177

    Article  Google Scholar 

  • Lee K, Lee C-G (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioprocess Eng 6(3):194–199

    Article  CAS  Google Scholar 

  • Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049

    Article  CAS  Google Scholar 

  • Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722

    Article  CAS  Google Scholar 

  • Mansour MP, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63(2):145–153

    Article  CAS  Google Scholar 

  • O’Connell D, Savelski M, Slater CS (2013) Life cycle assessment of dewatering routes for algae derived biodiesel processes. Clean Technol Environ Policy 15(4):567–577

    Article  Google Scholar 

  • Parthasarathy S, Gomes RL, Manickam S (2016) Process intensification of anaerobically digested palm oil mill effluent (AAD-POME) treatment using combined chitosan coagulation, hydrogen peroxide (H2O2) and Fenton’s oxidation. Clean Technol Environ Policy 18:219–230

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  • Picardo MC, de Medeiros JL, Monteiro JGM, Chaloub RM, Giordano M, Araújo ODQF (2013) A methodology for screening of microalgae as a decision making tool for energy and green chemical process applications. Clean Technol Environ Policy 15(2):275–291

    Article  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  Google Scholar 

  • Putri EV, Din MFM, Ahmed Z, Jamaluddin H, Chelliapan S (2011) Investigation of microalgae for high lipid content using palm oil mill effluent (POME) as carbon source. In: International conference on environment and industrial innovation. IPCBEE, vol 12. LACSIT Press Singapore

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98(3):560–564

    Article  CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Ubando AT, Cuello JL, El-Halwagi MM, Culaba AB, Promentilla MAB, Tan RR (2015) Application of stochastic analytic hierarchy process for evaluating algal cultivation systems for sustainable biofuel production. Clean Technol Environ Policy. doi:10.1007/s10098-015-1073-z

    Google Scholar 

  • Wagner J et al (2016) Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Bioresour Technol 207:166–174

    Article  CAS  Google Scholar 

  • Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Wong YS, Kadir MOAB, Teng TT (2009) Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. Bioresour Technol 100:4969–4975

    Article  CAS  Google Scholar 

  • Wu TY, Mohammad AW, Jahim JM, Anuar N (2010) Pollution control technologies for the treatment of palm oil mill effluent (POME) through end of-pipe processes. J Environ Manag 91:1467–1490

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Yu-ping Z (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour Technol 102:3098–3102

    Article  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(1):S71–S74

    Article  CAS  Google Scholar 

  • Zhang Y, Dube MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3):229–240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge IPASA and CRC centre, Universiti Teknologi Malaysia (UTM) for providing adequate facilities to conduct this research and for their financial support through the Research University Grant, Ministry of Science, Technology, and Innovation (MOSTI) for Science Fund Grant No. 06-01-06- SF1434. Authors are also grateful to UTM Research Management Centre (RMC) for PAS grants vote Q.J130000.2709.01K40 and Q.J130000.2709.01K41, and GUP grants vote Q.J130000.2609.11J04, 12H42, and Q.J130000.2609.10J8 and Flagship Project on “Algae as energy securing, supplement reserve, and formulating carbon sequestration for waste management from POME” with Vot No: 02G75. The authors would also like to acknowledge the support from Dr. Ponraj Mohanadoss and Tayebeh Khademi in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhd Zaimi Abd Majid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamyab, H., Din, M.F.M., Hosseini, S.E. et al. Optimum lipid production using agro-industrial wastewater treated microalgae as biofuel substrate. Clean Techn Environ Policy 18, 2513–2523 (2016). https://doi.org/10.1007/s10098-016-1212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1212-1

Keywords

Navigation