Skip to main content
Log in

Optimization of water network integrated with process models

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

In this paper, a novel approach for the synthesis of water network incorporated with process models is introduced. The process models are utilized to relate the variables (i.e., flow rate and concentration) of process output (typically defined as internal water source) with those of process input (i.e., water sink). A generalized water network superstructure is developed to embed all possible process units and all the connections among resources, interceptors, process units, and wastes. The problem is formulated as four optimization problems (minimum freshwater flow rate, intercepted flow rate, intercepted mass load, and number of connections), and the four models are solved in sequence to locate the targets. A literature case is used to validate the proposed approach. Moreover, a sour water network of a practical refinery plant is presented to illustrate the applicability and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NFS:

Set of fresh sources

NPU:

Set of process units

NIU:

Set of interceptor units

NCOMP:

Set of components

s :

Index for fresh source

u :

Index for process unit

i :

Index for interceptor unit

c :

Index for component

λ :

Slack factor

xFS s,c :

Concentration of component c in fresh source s (ppm)

xFU in,max u,c :

Maximum inlet concentration of component c for process unit u (ppm)

xFU out,max u,c :

Maximum outlet concentration of component c for process unit u (ppm)

RR i,c :

Removal ratio for component c for interceptor unit i

xFI in,LB i,c :

Lower bound for inlet concentration of component c for interceptor unit i (ppm)

xFI in,UB i,c :

Upper bound for inlet concentration of component c for interceptor unit i (ppm)

xFE UB c :

Upper bound for the concentration of component c for environment (ppm)

FSmin :

Minimum flow rate for the freshwater sources (t/h)

FImin :

Minimum flow rate for the interception units (t/h)

MFImin :

Minimum interception mass load for the interceptors (kg/h)

ΔFU u :

Delta flow rate for process unit u (t/h)

FS s :

Flow rate allocated from freshwater source s (t/h)

FSU s,u :

Flow rate from freshwater source s to process unit u (t/h)

FSI s,i :

Flow rate from freshwater source s to interceptor unit i (t/h)

FU in u :

Inlet flow rate for process unit u (t/h)

FU out u :

Outlet flow rate for process unit u (t/h)

FUU u′,u :

Flow rate from process unit u′ to process unit u (t/h)

FUI u,i :

Flow rate from process unit u to interceptor unit i (t/h)

FUE u :

Flow rate from process unit u to environment (t/h)

FIU i,u :

Flow rate from interceptor unit i to process unit u (t/h)

FI in i :

Inlet flow rate for interceptor unit i (t/h)

FII i′,i :

Flow rate from interceptor unit i′ to interceptor unit i (t/h)

FIE i :

Flow rate from interceptor unit i to environment (t/h)

xFU in u,c :

Inlet concentration of component c for process unit u (ppm)

xFU out u′,c :

Outlet concentration of component c for process unit u (ppm)

xFI in i,c :

Inlet concentration of component c for interceptor unit i (ppm)

xFI out i,c :

Outlet concentration of component c for interceptor unit i (ppm)

ΔM u,c :

Mass load of component c for process unit u (kg/h)

FE:

Total flow rate discharged to the environment (t/h)

xFE c :

Concentration of component c discharged to the environment (ppm)

yFSU s,u :

Connection variable from freshwater source s to process unit u

yFSI s,i :

Connection variable from freshwater source s to interceptor unit i

yFUU u′,u :

Connection variable from process unit u′ to process unit u

yFUI u,i :

Connection variable from process unit u to interceptor unit i

yFIU i,u :

Connection variable from interceptor unit i to process unit u

yFII i′,i :

Connection variable from process unit i′ to interceptor unit i

yFIE i :

Connection variable from interceptor unit i to environment

LB:

Lower bound

UB:

Upper bound

Lim:

Limiting value

min:

Minimum

max:

Maximum

in:

Inlet

out:

Outlet

max_input:

Maximum input

max_output:

Maximum output

References

  • Agrawal V, Shenoy UV (2006) Unified conceptual approach to targeting and design of water and hydrogen networks. AIChE J 52(3):1071–1082

    Article  CAS  Google Scholar 

  • Ahmetović E, Grossmann IE (2011) Global superstructure optimization for the design of integrated process water networks. AIChE J 57(2):434–457

    Article  Google Scholar 

  • Alva-Argáez A, Kokossis AC, Smith R (2007) The design of water-using systems in petroleum refining using a water-pinch decomposition. Chem Eng J 128(1):33–46

    Article  Google Scholar 

  • Alwi SRW, Manan ZA (2006) SHARPS: a new cost-screening technique to attain gost-effective minimum water network. AIChE J 52(11):3981–3988

    Article  CAS  Google Scholar 

  • Bagajewicz M (2000) A review of recent design procedures for water networks in refineries and process plants. Comput Chem Eng 24(9–10):2093–2113

    Article  CAS  Google Scholar 

  • Bagajewicz M, Savelski M (2001) On the use of linear models for the design of water utilization systems in process plants with a single contaminant. Chem Eng Res Des 79(A5):600–610

    Article  CAS  Google Scholar 

  • Bai J, Feng X, Deng C (2007) Graphically based optimization of single-contaminant regeneration reuse water systems. Chem Eng Res Des 85(A8):1178–1187

    Article  CAS  Google Scholar 

  • Bai J, Feng X, Deng C (2010) Optimal design of single-contaminant regeneration reuse water networks with process decomposition. AIChE J 56(4):915–929

    CAS  Google Scholar 

  • Bandyopadhyay S, Cormos CC (2008) Water management in process industries incorporating regeneration and recycle through a single treatment unit. Ind Eng Chem Res 47(4):1111–1119

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Ghanekar MD, Pillai HK (2006) Process water management. Ind Eng Chem Res 45(15):5287–5297

    Article  CAS  Google Scholar 

  • Castro P, Matos H, Fernandes MC, Nunes CP (1999) Improvements for mass-exchange networks design. Chem Eng Sci 54(11):1649–1665

    Article  CAS  Google Scholar 

  • Chan JH, Foo DCY, Kumaresan S, Aziz RA, Abu-Hassan MA (2008) An integrated approach for water minimisation in a PVC manufacturing process. Clean Technol Environ Policy 10(1):67–79

    Article  CAS  Google Scholar 

  • Chen C-L, Lee J-Y, Ng DKS, Foo DCY (2010) Synthesis of resource conservation network with sink–source interaction. Clean Technol Environ Policy 12(6):613–625

    Article  Google Scholar 

  • Deng C, Feng X (2011) Targeting for conventional and property-based water network with multiple resources. Ind Eng Chem Res 50(7):3722–3737

    Article  CAS  Google Scholar 

  • Deng C, Feng X, Bai J (2008) Graphically based analysis of water system with zero liquid discharge. Chem Eng Res Des 86(A2):165–171

    Article  CAS  Google Scholar 

  • Deng C, Feng X, Ng DKS, Foo DCY (2011) Process-based graphical approach for simultaneous targeting and design of water network. AIChE J 57(11):3085–3104

    Article  CAS  Google Scholar 

  • Dhole VR, Ramchandani N, Tainsh RA, Wasilewski M (1996) Make your process water pay for itself. Chem Eng 103(1):100–103

    CAS  Google Scholar 

  • El-Halwagi MM, Gabriel F, Harell D (2003) Rigorous graphical targeting for resource conservation via material recycle/reuse networks. Ind Eng Chem Res 42(19):4319–4328

    Article  CAS  Google Scholar 

  • Faria DC, Bagajewicz MJ (2010) On the appropriate modeling of process plant water systems. AIChE J 56(3):668–689

    CAS  Google Scholar 

  • Feng X, Bai J, Zheng XS (2007) On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems. Chem Eng Sci 62(8):2127–2138

    Article  CAS  Google Scholar 

  • Feng X, Bai J, Wang HM, Zheng XS (2008) Grass-roots design of regeneration recycling water networks. Comput Chem Eng 32(8):1892–1907

    Article  CAS  Google Scholar 

  • Foo DCY (2009) State-of-the-art review of pinch analysis techniques for water network synthesis. Ind Eng Chem Res 48(11):5125–5159

    Article  CAS  Google Scholar 

  • Foo DCY (2012) Process integration for resource conservation. CRC Press, Boca Raton

    Google Scholar 

  • Foo DCY (2013) A generalised guideline for process changes for resource conservation networks. Clean Technol Environ Policy 15(1):45–53

    Article  Google Scholar 

  • Foo DCY, Manan ZA, El-Halwagi MM (2006a) Correct identification of limiting water data for water network synthesis. Clean Technol Environ Policy 8(2):96–104

    Article  Google Scholar 

  • Foo DCY, Manan ZA, Tan YL (2006b) Use cascade analysis to optimize water networks. Chem Eng Prog 102(7):45–52

    CAS  Google Scholar 

  • Gunaratnam M, Alva-Argáez A, Kokossis A, Kim JK, Smith R (2005) Automated design of total water systems. Ind Eng Chem Res 44(3):588–599

    Article  CAS  Google Scholar 

  • Hallale N (2002) A new graphical targeting method for water minimisation. Adv Environ Res 6(3):377–390

    Article  CAS  Google Scholar 

  • Handani ZB, Wan Alwi SR, Hashim H, Manan ZA (2010) Holistic approach for design of minimum water networks using the mixed integer linear programming (MILP) technique. Ind Eng Chem Res 49(12):5742–5751

    Article  CAS  Google Scholar 

  • Handani ZB, Wan Alwi SR, Hashim H, Manan ZA, Sayid Abdullah SHY (2011) Optimal design of water networks involving multiple contaminants for global water operations. Asia-Pac J Chem Eng 6(5):771–777

    Article  CAS  Google Scholar 

  • Hu N, Feng X, Deng C (2011) Optimal design of multiple-contaminant regeneration reuse water networks with process decomposition. Chem Eng J 173(1):80–91

    Article  CAS  Google Scholar 

  • Huang CH, Chang CT, Ling HC, Chang CC (1999) A mathematical programming model for water usage and treatment network design. Ind Eng Chem Res 38(7):2666–2679

    Article  CAS  Google Scholar 

  • Jezowski J (2010) Review of water network design methods with literature annotations. Ind Eng Chem Res 49(10):4475–4516

    Article  CAS  Google Scholar 

  • Karuppiah R, Grossmann IE (2006) Global optimization for the synthesis of integrated water systems in chemical processes. Comput Chem Eng 30(4):650–673

    Article  CAS  Google Scholar 

  • Khor CS, Chachuat B, Shah N (2012) A superstructure optimization approach for water network synthesis with membrane separation-based regenerators. Comput Chem Eng 42:48–63

    Article  CAS  Google Scholar 

  • Kim J-K (2012) System analysis of total water systems for water minimization. Chem Eng J 193–194:304–317

    Article  Google Scholar 

  • Klemeš JJ (2012) Industrial water recycle/reuse. Curr Opin Chem Eng 1(3):238–245

    Article  Google Scholar 

  • Liu Y, Feng X, Chu KH, Deng C (2012) Optimization of water network with single and two outflow water-using processes. Chem Eng J 192:49–57

    Article  CAS  Google Scholar 

  • Manan ZA, Tan YL, Foo DCY (2004) Targeting the minimum water flow rate using water cascade analysis technique. AIChE J 50(12):3169–3183

    Article  CAS  Google Scholar 

  • Mann JG, Liu YA (1999) Industrial water reuse and wastewater minimization. McGraw-Hill Professional, New York

    Google Scholar 

  • Meyer CA, Floudas CA (2006) Global optimization of a combinatorially complex generalized pooling problem. AIChE J 52(3):1027–1037

    Article  CAS  Google Scholar 

  • Misener R, Floudas CA (2010) Global optimization of large-scale generalized pooling problems: quadratically constrained MINLP models. Ind Eng Chem Res 49(11):5424–5438

    Article  CAS  Google Scholar 

  • Ng DKS, Foo DCY, Tan RR (2009a) Automated targeting technique for single-impurity resource conservation networks. Part 1: direct reuse/recycle. Ind Eng Chem Res 48(16):7637–7646

    Article  CAS  Google Scholar 

  • Ng DKS, Foo DCY, Tan RR (2009b) Automated targeting technique for single-impurity resource conservation networks. Part 2: single-pass and partitioning waste-interception systems. Ind Eng Chem Res 48(16):7647–7661

    Article  CAS  Google Scholar 

  • Polley GT, Polley HL (2000) Design better water networks. Chem Eng Prog 96(2):47–52

    CAS  Google Scholar 

  • Ponce-Ortega JM, Hortua AC, El-Halwagi M, Jimenez-Gutierrez A (2009) A property-based optimization of direct recycle networks and wastewater treatment processes. AIChE J 55(9):2329–2344

    Article  CAS  Google Scholar 

  • Ponce-Ortega JM, Mosqueda-Jiménez FW, Serna-González M, Jiménez-Gutiérrez A, El-Halwagi MM (2011) A property-based approach to the synthesis of material conservation networks with economic and environmental objectives. AIChE J 57(9):2369–2387

    Article  CAS  Google Scholar 

  • Ponce-Ortega J, Nápoles-Rivera F, El-Halwagi M, Jiménez-Gutiérrez A (2012) An optimization approach for the synthesis of recycle and reuse water integration networks. Clean Technol Environ Policy 14(1):133–151

    Article  Google Scholar 

  • Prakash R, Shenoy UV (2005) Targeting and design of water networks for fixed flowrate and fixed contaminant load operations. Chem Eng Sci 60(1):255–268

    Article  CAS  Google Scholar 

  • Smith R (2005) Chemical process design and integration, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Takama N, Kuriyama T, Shiroko K, Umeda T (1980) Optimal water allocation in a petroleum refinery. Comput Chem Eng 4(4):251–258

    Article  Google Scholar 

  • Tan YL, Manan ZA (2006) Retrofit of water network with optimization of existing regeneration units. Ind Eng Chem Res 45(22):7592–7602

    Article  CAS  Google Scholar 

  • Wagialla KM, El-Halwagi MM, Ponce-Ortega J (2012) An integrated approach to the optimization of in-plant wastewater interception with mass and property constraints. Clean Technol Environ Policy 14(2):257–265

    Article  CAS  Google Scholar 

  • Wang YP, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006

    Article  CAS  Google Scholar 

  • Wang YP, Smith R (1995) Wastewater minimization with flowrate constraints. Chem Eng Res Des 73(A8):889–904

    CAS  Google Scholar 

  • Zheng PY, Feng X, Qian F, Cao DL (2006) Water system integration of a chemical plant. Energy Convers Manage 47(15–16):2470–2478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support provided by the National Basic Research Program of China (No. 2012CB720500) and the National Natural Science Foundation of China united with China National Petroleum Corporation (No. U1162121) are gratefully acknowledged. The research is also supported by Science Foundation of China University of Petroleum, Beijing (No. YJRC-2011-08 and LLYJ-2011-61).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Deng.

Appendix

Appendix

As mentioned in the proposed NLP/MINLP optimization model, the appropriate determination of lower and upper bounds for those variables is necessity for process operation. Besides, the given appropriate bounds would narrow the solving space and are helpful for the solving procedure.

For each process unit, the inlet flow rate cannot exceed its maximum input capacity. Hence, the upper bounds (FSU UB s,u and FUU UB u′,u ) would be set to equal to the maximum input capacity (FU max_input u ).

$${\text{FSU}}_{s,u}^{\text{UB}} = {\text{FU}}_{u}^{{{\text{max\_input}}}} \;\;\;\;\forall s \in {\text{NFS}},u \in {\text{NPU}} $$
(34)
$${\text{FUU}}_{u',u}^{\text{UB}} = {\text{FU}}_{u}^{{{\text{max\_input}}}} \;\;\;\;\forall u',u \in {\text{NPU}} $$
(35)

Besides, the outlet flow rate for each process unit cannot exceed its maximum output capacity. Thus, the upper bounds (FUU UB u,u and FUE UB u ) would be set to equal to the maximum output capacity (FU max_output u ).

$${\text{FUU}}_{u,u'}^{\text{UB}} = {\text{FU}}_{u}^{{{\text{max\_output}}}} \;\;\;\;\forall u',u \in {\text{NPU}} $$
(36)
$${\text{FUE}}_{u}^{\text{UB}} = {\text{FU}}_{u}^{{{\text{max\_output}}}} \;\;\;\;\forall u \in {\text{NPU}} $$
(37)

Similarly, the inlet/outlet flow rate for each interceptor unit cannot exceed its maximum input/output capacity. Thus, the upper bounds (FSI UB s,i , FII UB i′,i , FII UB i,i and FIE UB i ) could be set to equal to the maximum input/output capacity.

$${\text{FSI}}_{s,i}^{\text{UB}} = {\text{FI}}_{i}^{{\hbox{max} \_{\text{input}}}} \;\;\;\;\forall s \in {\text{NFS}},i \in {\text{NIU}} $$
(38)
$${\text{FII}}_{i',i}^{\text{UB}} = {\text{FI}}_{i}^{{\hbox{max} \_{\text{input}}}} \;\;\;\;\forall i,i' \in {\text{NIU}} $$
(39)
$${\text{FII}}_{i,i'}^{\text{UB}} = {\text{FI}}_{i}^{{\hbox{max} \_{\text{output}}}} \;\;\;\;\forall i,i' \in {\text{NIU}} $$
(40)
$${\text{FIE}}_{i}^{\text{UB}} {\text{ = FI}}_{i}^{{\hbox{max} \_{\text{output}}}} \;\;\;\;\forall i \in {\text{NIU}} $$
(41)

In addition, the upper bounds (FUI UB u,i and FIU UB i,u ) would be restricted by the minimum input/output capacities for both process unit and interceptor unit. Thus, the upper bounds (FUI UB u,i and FIU UB i,u ) could be determined by the following equations:

$${\text{FUI}}_{u,i}^{\text{UB}} {\text{ = min(FU}}_{u}^{{{\text{max\_output}}}} ,{\text{FI}}_{i}^{{\hbox{max} \_{\text{input}}}} ) { }\;\;\;\;\forall u \in {\text{NPU}}\;\;\;\;\forall i \in {\text{NIU}} $$
(42)
$${\text{FIU}}_{i,u}^{\text{UB}} {\text{ = min(FI}}_{i}^{{\hbox{max} \_{\text{output}}}} ,{\text{FU}}_{u}^{{{\text{max\_input}}}} ) { }\;\;\;\;\forall u \in {\text{NPU}}\;\;\;\;\forall i \in {\text{NIU}} $$
(43)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, C., Feng, X. & Wen, Z. Optimization of water network integrated with process models. Clean Techn Environ Policy 15, 473–487 (2013). https://doi.org/10.1007/s10098-013-0609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-013-0609-3

Keywords

Navigation