Skip to main content
Log in

Using MALDI-TOF MS typing method to decipher outbreak: the case of Staphylococcus saprophyticus causing urinary tract infections (UTIs) in Marseille, France

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Staphylococcus saprophyticus is one of the leading causes of urinary tract infections (UTI). In December 2014, our surveillance system identified an abnormal increase in S. saprophyticus causing UTIs in four university hospitals in Marseille, indicating a suspected community S. saprophyticus UTI outbreak. This was detected by our surveillance system BALYSES (Bacterial real-time Laboratory-based Surveillance System). S. saprophyticus/ Escherichia coli UTI ratio increased three-fold from 0.0084 in 2002 to 0.025 in December 2015 in Marseille with an abnormal peak in December 2014, and with an annual estimated ratio trend of 5.10−6 (p-value < 10−3). Matrix-Assisted Laser Desorption Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS) spectral analysis of strains was used to analyse strains cluster expansion, comparing strains from Marseille to those from Nice during the same period. MALDI-TOF MS spectral analysis revealed a geographical restricted clonal expansion of the strains clusters in Marseille as compared to Nice. Our finding suggests (i) a geographically restricted expansion of a specific S. saprophyticus strain clusters circulating in Marseille, and (ii) MALDI-TOF MS can be used as a cost-effective tool to investigate an outbreak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wallmark G, Arremark I, Telander B (1978) Staphylococcus saprophyticus: a frequent cause of acute urinary tract infection among female outpatients. J Infect Dis 138:791–797 http://www.ncbi.nlm.nih.gov/pubmed/739158

    Article  CAS  PubMed  Google Scholar 

  2. Le Bouter A (2011) Infections à Staphylococcus saprophyticus. J des Anti-Infect 13:12–19. http://www.sciencedirect.com/science/article/pii/S2210654511000032. doi:10.1016/j.antinf.2011.01.002

    Article  Google Scholar 

  3. Latham RH, Running K, Stamm WE (1983) Urinary tract infections in young adult women caused by Staphylococcus saprophyticus. JAMA 250:3063–3066 http://www.ncbi.nlm.nih.gov/pubmed/6644988

    Article  CAS  PubMed  Google Scholar 

  4. Kim BS, Kim CT, Park BH, Kwon S, Cho YJ, Kim N et al (2012) Draft genome sequence of Staphylococcus saprophyticus subsp. saprophyticus M1-1, isolated from the gills of a Korean rockfish, sebastes schlegeli hilgendorf, after high hydrostatic pressure processing. J Bacteriol 194:4441–4442. doi:10.1128/JB.00848-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hedman P, Ringertz O, Lindström M, Olsson K (1993) The origin of Staphylococcus saprophyticus from cattle and pigs. Scand J Infect Dis 25:57–60 http://www.ncbi.nlm.nih.gov/pubmed/8460350

    Article  CAS  PubMed  Google Scholar 

  6. Spinali S, van Belkum A, Goering RV, Girard V, Welker M, Van Nuenen M et al (2015) Microbial typing by matrix-assisted laser desorption ionization–time of flight mass spectrometry: do we need guidance for data interpretation? J Clin Microbiol 53:760–765. http://www.ncbi.nlm.nih.gov/pubmed/25056329. doi:10.1128/JCM.01635-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Firacative C, Trilles L, Meyer W (2012) MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One 7:e37566. http://dx.plos.org/10.1371/journal.pone.0037566. doi:10.1371/journal.pone.0037566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seng P, Rolain J-M, Fournier PE, La Scola B, Drancourt M, Raoult D (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 5:1733–1754. http://www.ncbi.nlm.nih.gov/pubmed/21133692. doi:10.2217/fmb.10.127

    Article  CAS  PubMed  Google Scholar 

  9. Spanu T, De Carolis E, Fiori B, Sanguinetti M, D’Inzeo T, Fadda G et al (2011) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of bloodstream infection staphylococcal isolates. Clin Microbiol Infect 17:44–49. http://linkinghub.elsevier.com/retrieve/pii/S1198743X14609113. doi:10.1111/j.1469-0691.2010.03181.x

    Article  CAS  PubMed  Google Scholar 

  10. Ayeni FA, Andersen C, Nørskov-Lauritsen N (2017) Comparison of growth on mannitol salt agar, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, VITEK(®) 2 with partial sequencing of 16S rRNA gene for identification of coagulase-negative staphylococci. Microb Pathog 105:255–259. http://linkinghub.elsevier.com/retrieve/pii/S0882401017300529. doi:10.1016/j.micpath.2017.02.034

    Article  CAS  PubMed  Google Scholar 

  11. Abat C, Chaudet H, Colson P, Rolain J-M, Raoult D (2015) Real-time microbiology laboratory surveillance system to detect abnormal events and emerging infections, Marseille, France. Emerg Infect Dis 21:1302–1310. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4517727&tool=pmcentrez&rendertype=abstract. doi:10.3201/eid2108.141419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Togo AHH, Khelaifia S, Lagier J-C, Caputo A, Robert C, Fournier P-E et al (2016) Noncontiguous finished genome sequence and description of Paenibacillus ihumii sp. nov. strain AT5. New Microbes New Infect 10:142–150. http://linkinghub.elsevier.com/retrieve/pii/S2052297516000159. doi:10.1016/j.nmni.2016.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seng P, Abat C, Rolain JM, Colson P, Lagier J-C, Gouriet F et al (2013) Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:2182–2194. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3697718%7B&%7Dtool=pmcentrez%7B&%7Drendertype=abstract. doi:10.1128/JCM.00492-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28:2270–2271. http://www.ncbi.nlm.nih.gov/pubmed/22796955. doi:10.1093/bioinformatics/bts447

    Article  CAS  PubMed  Google Scholar 

  15. Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195. http://www.ncbi.nlm.nih.gov/pubmed/23418397. doi:10.1093/molbev/mst024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Suzuki Y, Glazko GV, Nei M (2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc Natl Acad Sci 99:16138–16143. http://www.ncbi.nlm.nih.gov/pubmed/12451182. doi:10.1073/pnas.212646199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gibb S, Strimmer K (2015) Differential protein expression and peak selection in mass spectrometry data by binary discriminant analysis. Bioinformatics 31:3156–3162. http://www.ncbi.nlm.nih.gov/pubmed/26026136. doi:10.1093/bioinformatics/btv334

    Article  CAS  PubMed  Google Scholar 

  18. R Core Team (2016) R Development Core Team R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 0:409. http://www.r-project.org, doi: 10.1007/978-3-540-74686-7

  19. Widerström M, Wiström J, Ferry S, Karlsson C, Monsen T, Widerstrom M et al (2017) Molecular epidemiology of Staphylococcus saprophyticus isolated from women with uncomplicated community-acquired urinary tract infection. J Clin Microbiol 45:1561–1564. http://www.ncbi.nlm.nih.gov/pubmed/17344356. doi:10.1128/JCM.02071-06

    Article  Google Scholar 

  20. Fabre R, Mérens A, Tabone-Ledan C, Epifanoff G, Cavallo J-D, Ternois I (2013) Staphylococcus saprophyticus isolés d’examens cytobactériologiques urinaires en ville : épidémiologie et sensibilité aux antibiotiques (étude Label Bio Elbeuf – novembre 2007–juillet 2009). Pathol Biol 61:44–48. http://linkinghub.elsevier.com/retrieve/pii/S0369811412000442. doi:10.1016/j.patbio.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  21. Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73:746–750 http://www.ncbi.nlm.nih.gov/pubmed/11248887

    Article  CAS  PubMed  Google Scholar 

  22. Widerström M, Wiström J, Sjöstedt A, Monsen T (2012) Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur J Clin Microbiol Infect Dis 31:7–20. http://www.ncbi.nlm.nih.gov/pubmed/21533877. doi:10.1007/s10096-011-1270-6

  23. de Sousa VS, Rabello RF, Dias RC, Martins IS, Santos LB, Alves EM et al (2013) Time-based distribution of Staphylococcus saprophyticus pulsed field gel-electrophoresis clusters in community-acquired urinary tract infections. Mem Inst Oswaldo Cruz 108:73–76. http://www.ncbi.nlm.nih.gov/pubmed/23440118. doi:10.1590/S0074-02762013000100012

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sintchenko V, Holmes EC (2015) The role of pathogen genomics in assessing disease transmission. BMJ 350:h1314 http://www.ncbi.nlm.nih.gov/pubmed/25964672

    Article  PubMed  Google Scholar 

  25. Widerström M, Wiström J, Ferry S, Karlsson C, Monsen T (2007) Molecular epidemiology of Staphylococcus saprophyticus isolated from women with uncomplicated community-acquired urinary tract infection. J Clin Microbiol 45:1561–1564. doi:10.1128/JCM.02071-06

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hedman P, Ringertz O (1991) Urinary tract infections caused by Staphylococcus saprophyticus. A matched case control study. J Inf Secur 23:145–153. http://www.ncbi.nlm.nih.gov/pubmed/1753113. doi:10.1016/0163-4453(91)92045-7

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Rolain.

Ethics declarations

Funding sources

This work was funded by IHU Méditerranée Infection.

Conflict of interest

We have no conflicts of interest to declare.

Ethical approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mlaga, K.D., Dubourg, G., Abat, C. et al. Using MALDI-TOF MS typing method to decipher outbreak: the case of Staphylococcus saprophyticus causing urinary tract infections (UTIs) in Marseille, France. Eur J Clin Microbiol Infect Dis 36, 2371–2377 (2017). https://doi.org/10.1007/s10096-017-3069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-017-3069-6

Keywords

Navigation