Skip to main content
Log in

Moving towards the immunodiagnosis of staphylococcal intramammary infections

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Bovine mastitis is the primary disease of dairy cattle that has a great impact on the dairy industry. It is estimated that worldwide economic losses due to mastitis range between US$82 and US$131 per cow/year. A fast and efficient diagnosis of the disease remains a major bottleneck that directly influences the speed with which treatment decisions and management are undertaken. Microbiological culture remains the gold standard in the identification of bacteria that cause mastitis, but the method has inherent limitations, such as a delay in obtaining results and cost, and requires special care during the collection and processing of the sample. For this reason, multiple groups have devoted efforts to develop alternative methods that, preferably, can be easily accomplished in the field. The specificity of the antigen–antibody reaction has enabled the emergence of major diagnostic methods used in clinical practice, such as immunoassays, which have significant advantages in terms of speed, sensitivity, specificity, and portability. Commercially, immunodiagnostics have been used in the detection of various diseases in cattle. However, in several cases, only a presumptive diagnosis can be made, which requires confirmation using culture-based methods. This review discusses the immunological-based assays developed since the 1990s for the detection of Staphylococcus aureus, which is considered the primary pathogen of contagious bovine mastitis. Although no ideal antigens ensure the accurate performance of tests and the costs need to be reduced to allow for good market competitiveness, immunoassays, particularly lateral flow immunoassay and immunoagglutination, have emerged as promising tests to be used in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. da Silva GV (2013) Identificação das espécies de Staphylococcus presentes no leite ovino. Revista Verde 7:188–194

    Google Scholar 

  2. Euzéby JP (2014) List of prokaryotic names with standing in nomenclature. Genus Staphylococcus. IOP Publishing Bacterio Net. http://www.bacterio.cict.fr/staphylococcus.html. Accessed 5 Feb 2014

  3. Tan TY, Ng SY, Ng WX (2006) Clinical significance of coagulase-negative staphylococci recovered from nonsterile sites. J Clin Microbiol 44:3413–3414. doi:10.1128/JCM.00757-06

    Article  PubMed  PubMed Central  Google Scholar 

  4. Piette A, Verschraegen G (2009) Role of coagulase-negative staphylococci in human disease. Vet Microbiol 134:45–54. doi:10.1016/j.vetmic.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Mallard C, Levy O (2012) Potential role of coagulase-negative Staphylococcus infection in preterm brain injury. Adv Neuroimmune Biol 3:41–48. doi:10.3233/NIB-2012-012034

    Google Scholar 

  6. De Vliegher S, Fox LK, Piepers S, McDougall S, Barkema HW (2012) Invited review: mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. J Dairy Sci 95:1025–1040. doi:10.3168/jds.2010-4074

    Article  PubMed  Google Scholar 

  7. Pitkälä A, Haveri M, Pyörälä S, Myllys V, Honkanen-Buzalski T (2004) Bovine mastitis in Finland 2001—prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci 87:2433–2441. doi:10.3168/jds.S0022-0302(04)73366-4

    Article  PubMed  Google Scholar 

  8. Tenhagen BA, Köster G, Wallmann J, Heuwieser W (2006) Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci 89:2542–2551. doi:10.3168/jds.S0022-0302(06)72330-X

    Article  CAS  PubMed  Google Scholar 

  9. Almaw G, Zerihun A, Asfaw Y (2008) Bovine mastitis and its association with selected risk factors in smallholder dairy farms in and around Bahir Dar, Ethiopia. Trop Anim Health Prod 40:427–432. doi:10.1007/s11250-007-9115-0

    Article  CAS  PubMed  Google Scholar 

  10. Sampimon OC, Barkema HW, Berends IM, Sol J, Lam TJ (2009) Prevalence and herd-level risk factors for intramammary infection with coagulase-negative staphylococci in Dutch dairy herds. Vet Microbiol 134:37–44. doi:10.1016/j.vetmic.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  11. Plata K, Rosato AE, Wegrzyn G (2009) Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochim Pol 56:597–612

    CAS  PubMed  Google Scholar 

  12. Peton V, Le Loir Y (2014) Staphylococcus aureus in veterinary medicine. Infect Genet Evol 21:602–615. doi:10.1016/j.meegid.2013.08.011

    Article  PubMed  Google Scholar 

  13. Chu C, Wei Y, Chuang ST, Yu C, Changchien CH, Su Y (2013) Differences in virulence genes and genome patterns of mastitis-associated Staphylococcus aureus among goat, cow, and human isolates in Taiwan. Foodborne Pathog Dis 10:256–262. doi:10.1089/fpd.2012.1278

    Article  CAS  PubMed  Google Scholar 

  14. Fitzgerald JR (2012) Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 20:192–198. doi:10.1016/j.tim.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  15. Smith EM, Green LE, Medley GF, Bird HE, Fox LK, Schukken YH, Kruze JV, Bradley AJ, Zadoks RN, Dowson CG (2005) Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. J Clin Microbiol 43:4737–4743. doi:10.1128/JCM.43.9.4737-4743.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rabello RF, Moreira BM, Lopes RMM, Teixeira LM, Riley LW, Castro ACD (2007) Multilocus sequence typing of Staphylococcus aureus isolates recovered from cows with mastitis in Brazilian dairy herds. J Med Microbiol 56:1505–1511. doi:10.1099/jmm.0.47357-0

    Article  CAS  PubMed  Google Scholar 

  17. Hauck CR, Ohlsen K (2006) Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol 9:5–11. doi:10.1016/j.mib.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  18. Akers RM, Nickerson SC (2011) Mastitis and its impact on structure and function in the ruminant mammary gland. J Mammary Gland Biol Neoplasia 16:275–289. doi:10.1007/s10911-011-9231-3

    Article  PubMed  Google Scholar 

  19. Zhao X, Lacasse P (2008) Mammary tissue damage during bovine mastitis: causes and control. J Anim Sci 86:57–65. doi:10.2527/jas.2007-0302

    Article  CAS  Google Scholar 

  20. Oviedo-Boyso J, Barriga-Rivera JG, Valdez-Alarcón JJ, Bravo-Patiño A, Cárabez-Trejo A, Cajero-Juárez M, Baizabal-Aguirre VM (2008) Internalization of Staphylococcus aureus by bovine endothelial cells is associated with the activity state of NF-kB and modulated by the pro-inflammatory cytokines TNF-α and IL-1β. Scand J Immunol 67:169–176. doi:10.1111/j.1365-3083.2007.02056.x

    Article  CAS  PubMed  Google Scholar 

  21. Sinha B, Fraunholz M (2010) Staphylococcus aureus host cell invasion and post-invasion events. Int J Med Microbiol 300:170–175. doi:10.1016/j.ijmm.2009.08.019

    Article  PubMed  Google Scholar 

  22. Tuchscherr L, Medina E, Hussain M, Völker W, Heitmann V, Niemann S, Holzinger D, Roth J, Proctor RA, Becker K, Peters G, Löffler B (2011) Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 3:129–141. doi:10.1002/emmm.201000115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sordillo LM, Streicher KL (2002) Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia 7:135–146. doi:10.1023/A:1020347818725

    Article  PubMed  Google Scholar 

  24. Aitken SL, Corl CM, Sordillo LM (2011) Immunopathology of mastitis: insights into disease recognition and resolution. J Mammary Gland Biol Neoplasia 16:291–304. doi:10.1007/s10911-011-9230-4

    Article  PubMed  Google Scholar 

  25. Wellnitz O, Bruckmaier RM (2012) The innate immune response of the bovine mammary gland to bacterial infection. Vet J 192:148–152. doi:10.1016/j.tvjl.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  26. Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth H-J, Sipka A, Smith DGE, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert H-M (2011) Host–response patterns of intramammary infections in dairy cows. Vet Immunol Immunop 144:270–289. doi:10.1016/j.vetimm.2011.08.022

    Article  Google Scholar 

  27. Strandberg Y, Gray C, Vuocolo T, Donaldson L, Broadway M, Tellam R (2005) Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31:72–86. doi:10.1016/j.cyto.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  28. Zbinden C, Stephan R, Johler S, Borel N, Bünter J, Bruckmaier RM, Wellnitz O (2014) The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype. PLoS One 9:e87374. doi:10.1371/journal.pone.0087374

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ferreira AM, Bislev SL, Bendixen E, Almeida AM (2013) The mammary gland in domestic ruminants: a systems biology perspective. J Proteomics 94:110–123. doi:10.1016/j.jprot.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  30. Fox LK, Adams DS (2000) The ability of the enzyme-linked immunosorbent assay to detect antibody against Staphylococcus aureus in milk following experimental intramammary infection. J Vet Med B Infect Dis Vet Public Health 47:517–526. doi:10.1046/j.1439-0450.2000.00379.x

    Article  CAS  PubMed  Google Scholar 

  31. Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R (2009) Mastitis detection: current trends and future perspectives. Trends Biotechnol 27:486–493. doi:10.1016/j.tibtech.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  32. Ajitkumar P, Barkema HW, De Buck J (2012) Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences. Vet Microbiol 155:332–340. doi:10.1016/j.vetmic.2011.08.033

    Article  CAS  PubMed  Google Scholar 

  33. Sears PM, Smith BS, English PB, Herer PS, Gonzalez RN (1990) Shedding pattern of Staphylococcus aureus from bovine intramammary infections. J Dairy Sci 73:2785–2789. doi:10.3168/jds.S0022-0302(90)78964-3

    Article  CAS  PubMed  Google Scholar 

  34. Dohoo IR, Smith J, Andersen S, Kelton DF, Godden S; Mastitis Research Workers’ Conference (2011) Diagnosing intramammary infections: evaluation of definitions based on a single milk sample. J Dairy Sci 94:250–261. doi:10.3168/jds.2010-3559

    Article  CAS  PubMed  Google Scholar 

  35. Kateete DP, Kimani CN, Katabazi FA, Okeng A, Okee MS, Nanteza A, Joloba ML, Najjuka FC (2010) Identification of Staphylococcus aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Ann Clin Microbiol Antimicrob 9:23–29. doi:10.1186/1476-0711-9-23

    Article  PubMed  PubMed Central  Google Scholar 

  36. Walker JB, Rajala-Schultz PJ, Walker WL, Mathews JL, Gebreyes WA, DeGraves FJ (2011) Variation in daily shedding patterns of Staphylococcus aureus in naturally occurring intramammary infections. J Vet Diagn Invest 23:1114–1122. doi:10.1177/1040638711425587

    Article  PubMed  Google Scholar 

  37. Walker JB, Walker WL, DeGraves FJ, Mathews JL, Gebreyes WA, Rajala-Schultz PJ (2013) Staphylococcus aureus shedding pattern throughout lactation in dairy cows with naturally occurring intramammary infection. J Am Vet Med Assoc 242:1410–1418. doi:10.2460/javma.242.10.1410

    Article  PubMed  Google Scholar 

  38. Zecconi A, Piccinini R, Zepponi A, Ruffo G (1997) Recovery of Staphylococcus aureus from centrifuged quarter milk samples. J Dairy Sci 80:3058–3063

    Article  CAS  PubMed  Google Scholar 

  39. Walker JB, Rajala-Schultz PJ, DeGraves FJ (2010) The effect of inoculum volume on the microbiologic detection of naturally occurring Staphylococcus aureus intramammary infections. J Vet Diagn Invest 22:720–724

    Article  PubMed  Google Scholar 

  40. Molenda J, Twardoń J, Błaszkowska M, Czerw M (2003) The microbiological monitoring of production, gain, transport and preservation of milk. EJPAU 6(2)

  41. Council Directive 92/46/EEC of 16 June 1992 laying down the health rules for the production and placing on the market of raw milk, heat-treated milk and milk-based products. Council Directives concerning Legislation on Food Hygiene

  42. National Mastitis Council (1999) Laboratory handbook on bovine mastitis (revised edition). National Mastitis Council Inc., Madison, pp 64–83

    Google Scholar 

  43. Boerlin P, Kuhnert P, Hüssy D, Schaellibaum M (2003) Methods for identification of Staphylococcus aureus isolates in cases of bovine mastitis. J Clin Microbiol 41:767–771. doi:10.1128/JCM.41.2.767-771.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Graber HU, Pfister S, Burgener P, Boss R, Meylan M, Hummerjohann J (2013) Bovine Staphylococcus aureus: diagnostic properties of specific media. Res Vet Sci 95:38–44. doi:10.1016/j.rvsc.2013.02.023

    Article  CAS  PubMed  Google Scholar 

  45. Breed RS, Murray EGD, Smith NR (1957) Bergey’s manual of determinative bacteriology. Williams and Wilkins Company, Baltimore

    Google Scholar 

  46. D’Souza HA, Baron EJ (2005) BBL CHROMagar Staph aureus is superior to mannitol salt for detection of Staphylococcus aureus in complex mixed infections. Am J Clin Pathol 123:806–808. doi:10.1309/FVHRF3GRLEQXGBAG

    Article  PubMed  Google Scholar 

  47. Bautista-Trujillo GU, Solorio-Rivera JL, Rentería-Solórzano I, Carranza-Germán SI, Bustos-Martínez JA, Arteaga-Garibay RI, Baizabal-Aguirre VM, Cajero-Juárez M, Bravo-Patiño A, Valdez-Alarcón JJ (2013) Performance of culture media for the isolation and identification of Staphylococcus aureus from bovine mastitis. J Med Microbiol 62:369–376. doi:10.1099/jmm.0.046284-0

    Article  CAS  PubMed  Google Scholar 

  48. Hébert GA, Hancock GA (1985) Synergistic hemolysis exhibited by species of staphylococci. J Clin Microbiol 22:409–415

    PubMed  PubMed Central  Google Scholar 

  49. Baird RM, Lee WH (1995) Media used in the detection and enumeration of Staphylococcus aureus. Int J Food Microbiol 26:15–24. doi:10.1016/S0079-6352(05)80008-6

    Article  CAS  PubMed  Google Scholar 

  50. Gaillot O, Wetsch M, Fortineau N, Berche P (2000) Evaluation of CHROMagar Staph aureus, a new chromogenic medium, for isolation and presumptive Identification of Staphylococcus aureus from human clinical specimens. J Clin Microbiol 38:1587–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Flayhart D, Lema C, Borek A, Carroll KC (2004) Comparison of the BBL CHROMagar Staph aureus agar medium to conventional media for detection of Staphylococcus aureus in respiratory samples. J Clin Microbiol 42:3566–3569. doi:10.1128/JCM.42.8.3566-3569.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Silva BO, Caraviello DZ, Rodrigues AC, Ruegg PL (2005) Evaluation of petrifilm for the isolation of Staphylococcus aureus from milk samples. J Dairy Sci 88:3000–3008. doi:10.3168/jds.S0022-0302 (05) 72980-5

    Article  CAS  PubMed  Google Scholar 

  53. Mansion-de Vries EM, Knorr N, Paduch JH, Zinke C, Hoedemaker M, Krömker V (2014) A field study evaluation of Petrifilm™ plates as a 24-h rapid diagnostic test for clinical mastitis on a dairy farm. Prev Vet Med 113:620–624. doi:10.1016/j.prevetmed.2013.11.019

    Article  PubMed  Google Scholar 

  54. Hara Y, Chin CY, Mohamed R, Puthucheary SD, Nathan S (2013) Multiple-antigen ELISA for melioidosis—a novel approach to the improved serodiagnosis of melioidosis. BMC Infect Dis 13:165–172. doi:10.1186/1471-2334-13-165

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hartleben CP, Leal FM, Monte LG, Hartwig DD, Seixas FK, Vasconcellos SA, Brihuega B, Dellagostin OA (2013) Serological analysis by enzyme-linked immunosorbent assay using recombinant antigen LipL32 for the diagnosis of swine leptospirosis. Curr Microbiol 66:106–109. doi:10.1007/s00284-012-0237-x

    Article  CAS  PubMed  Google Scholar 

  56. Yan W, Saleem MH, McDonough P, McDonough SP, Divers TJ, Chang YF (2013) Development of an enzyme-linked immunosorbent assay using a recombinant LigA fragment comprising repeat domains 4 to 7.5 as an antigen for diagnosis of equine leptospirosis. Clin Vaccine Immunol 20:1143–1149. doi:10.1128/CVI.00245-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ye C, Yan W, McDonough PL, McDonough SP, Mohamed H, Divers TJ, Chang YF, Yang Z (2014) Serodiagnosis of equine leptospirosis by enzyme-linked immunosorbent assay using four recombinant protein markers. Clin Vaccine Immunol 21:478–483. doi:10.1128/CVI.00649-13

    Article  PubMed  PubMed Central  Google Scholar 

  58. OIE (2013) Principles and methods of validation of diagnostic assays for infectious diseases. In: OIE Terrestrial Manual 2013: manual of diagnostic tests and vaccines for terrestrial animals. Chapter 1.1.5. World Organisation for Animal Health, Paris, France. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.05_VALIDATION.pdf. Accessed 30 Jan 2014

  59. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2010) Brock biology of microorganisms. Benjamin Cummings Publishing Company, San Francisco

  60. Stewart BJ, Houghton RL, Morrow WJW, Raychaudhri S (2006) Design considerations for immunodiagnostics. IVD Technology. http://www.ivdtechnology.com/article/design-considerations-immunodiagnostics. Accessed 1 Feb 2014

  61. Le Maréchal C, Seyffert N, Jardin J, Hernandez D, Jan G, Rault L, Azevedo V, François P, Schrenzel J, van de Guchte M, Even S, Berkova N, Thiéry R, Fitzgerald JR, Vautor E, Le Loir Y (2011) Molecular basis of virulence in Staphylococcus aureus mastitis. PLoS One 6:e27354. doi:10.1371/journal.pone.0027354

    Article  PubMed  PubMed Central  Google Scholar 

  62. Le Maréchal C, Jardin J, Jan G, Even S, Pulido C, Guibert JM, Hernandez D, François P, Schrenzel J, Demon D, Meyer E, Berkova N, Thiéry R, Vautor E, Le Loir Y (2011) Staphylococcus aureus seroproteomes discriminate ruminant isolates causing mild or severe mastitis. Vet Res 42:35. doi:10.1186/1297-9716-42-35

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fabres-Klein MH, Klein RC, De Paula SO, Ribon AO (2013) Immunorelevant proteins for the diagnosis of bovine staphylococcal mastitis. World J Microbiol Biotechnol 29:1155–1160. doi:10.1007/s11274-013-1274-8

    Article  CAS  PubMed  Google Scholar 

  64. Mansor R, Mullen W, Albalat A, Zerefos P, Mischak H, Barrett DC, Biggs A, Eckersall PD (2013) A peptidomic approach to biomarker discovery for bovine mastitis. J Proteomics 85:89–98. doi:10.1016/j.jprot.2013.04.027

    Article  CAS  PubMed  Google Scholar 

  65. Klein RC, Fabres-Klein MH, Brito MA, Fietto LG, Ribon AO (2012) Staphylococcus aureus of bovine origin: genetic diversity, prevalence and the expression of adhesin-encoding genes. Vet Microbiol 160:183–188. doi:10.1016/j.vetmic.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  66. Stutz K, Stephan R, Tasara T (2011) SpA, ClfA, and FnbA genetic variations lead to Staphaurex test-negative phenotypes in bovine mastitis Staphylococcus aureus isolates. J Clin Microbiol 49:638–646. doi:10.1128/JCM.01148-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hecker M, Becher D, Fuchs S, Engelmann S (2010) A proteomic view of cell physiology and virulence of Staphylococcus aureus. Int J Med Microbiol 300:76–87. doi:10.1016/j.ijmm.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  68. Kim HK, Thammavongsa V, Schneewind O, Missiakas D (2012) Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol 15:92–99. doi:10.1016/j.mib.2011.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dalla Pozza MC, Ricci A, Vicenzoni G (1999) Protein a gene polymorphism analysis in Staphylococcus aureus strains isolated from bovine subclinical mastitis. J Dairy Res 66:449–453

    Article  CAS  PubMed  Google Scholar 

  70. Kumar R, Yadav BR, Singh RS (2010) Genetic determinants of antibiotic resistance in Staphylococcus aureus isolates from milk of mastitic crossbred cattle. Curr Microbiol 60:379–386. doi:10.1007/s00284-009-9553-1

    Article  CAS  PubMed  Google Scholar 

  71. Momtaz H, Rahimi E, Tajbakhsh E (2010) Detection of some virulence factors in Staphylococcus aureus isolated from clinical and subclinical bovine mastitis in Iran. Afr J Biotechnol 9:3753–3758

    CAS  Google Scholar 

  72. Berends ETM, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M (2010) Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576–586. doi:10.1159/000319909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sasaki T, Tsubakishita S, Tanaka Y, Sakusabe A, Ohtsuka M, Hirotaki S, Kawakami T, Fukata T, Hiramatsu K (2010) Multiplex-PCR method for species identification of coagulase-positive staphylococci. J Clin Microbiol 48:765–769. doi:10.1128/JCM.01232-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gudding R (1983) Differentiation of staphylococci on the basis of nuclease properties. J Clin Microbiol 18:1098–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Joyce PJ, O’Sullivan CA, Shattock AG, Sloan TM (1992) Immunodiagnostic assays for use in the detection and determination of mastitis. Patent application number US 5168044 A

  76. Hicks CR, Eberhart RJ, Sischo WM (1994) Comparison of microbiologic culture, an enzyme-linked immunosorbent assay, and determination of somatic cell count for diagnosing Staphylococcus aureus mastitis in dairy cows. J Am Vet Med Assoc 204:255–260

    CAS  PubMed  Google Scholar 

  77. Scott Adams D, McGuire IC Jr (1989) Diagnostic test for Staphylococcal mastitis in cattle. Patent application number US 4849341 (A)

  78. Grove TM, Jones GM (1992) Use of an enzyme-linked immunosorbent assay to monitor the control of Staphylococcus aureus mastitis. J Dairy Sci 75:423–434. doi:10.3168/jds.S0022-0302(92)77778-9

    Article  CAS  PubMed  Google Scholar 

  79. Watts JL, Owens WE, Ray CH, Washburn PJ (1992) Evaluation of the ProStaph 1™ test for detection of Staphylococcus aureus intramammary infections in dairy cattle. Agri-Practice 13:31–34

    Google Scholar 

  80. Yazdankhah SP, Hellemann AL, Rønningen K, Olsen E (1998) Rapid and sensitive detection of Staphylococcus species in milk by ELISA based on monodisperse magnetic particles. Vet Microbiol 62:17–26. doi:10.1016/S0378-1135(98)00193-X

    Article  CAS  PubMed  Google Scholar 

  81. Yazdankhah SP, Sølverød L, Simonsen S, Olsen E (1999) Development and evaluation of an immunomagnetic separation-ELISA for the detection of Staphylococcus aureus thermostable nuclease in composite milk. Vet Microbiol 67:113–125. doi:10.1016/S0378-1135(99)00035-8

    Article  CAS  PubMed  Google Scholar 

  82. Libing W, Chuanlai X, Qianqian Y, Xiaofang D, Shanshan S, Xun Z (2012) Kit for rapid detection of Staphylococcus aureus in sample and detection method thereof. Patent application number CN102323416 (A)

  83. Xiaohui W, Dong L, Runcang S (2011) Fluorescent probe and method for rapidly detecting Staphylococcus aureus by using same. Patent application number CN102053151 (A)

  84. Boutonnier A, Fournier J-M (2003) Reagent for the detection of Staphylococcus aureus by agglutination. Patent application number US20030068662 (A1)

  85. Zschöck M, Nesseler A, Sudarwanto I (2005) Evaluation of six commercial identification kits for the identification of Staphylococcus aureus isolated from bovine mastitis. J Appl Microbiol 98:450–455. doi:10.1111/j.1365-2672.2004.02470.x

    Article  PubMed  Google Scholar 

  86. Reinoso EB, El-Sayed A, Lämmler C, Bogni C, Zschöck M (2008) Genotyping of Staphylococcus aureus isolated from humans, bovine subclinical mastitis and food samples in Argentina. Microbiol Res 163:314–322. doi:10.1016/j.micres.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  87. Kozytska S, Stauss D, Pawlik MC, Hensen S, Eckart M, Ziebuhr W, Witte W, Ohlsen K (2010) Identification of specific genes in Staphylococcus aureus strains associated with bovine mastitis. Vet Microbiol 145:360–365. doi:10.1016/j.vetmic.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  88. Wolf C, Kusch H, Monecke S, Albrecht D, Holtfreter S, von Eiff C, Petzl W, Rainard P, Bröker BM, Engelmann S (2011) Genomic and proteomic characterization of Staphylococcus aureus mastitis isolates of bovine origin. Proteomics 11:2491–502. doi:10.1002/pmic.201000698

    Article  CAS  PubMed  Google Scholar 

  89. Leuvering JH, Goverde BC, Thal PJ, Schuurs AH (1983) A homogeneous sol particle immunoassay for human chorionic gonadotrophin using monoclonal antibodies. J Immunol Methods 60:9–23. doi:10.1016/0022-1759(83)90330-7

    Article  CAS  PubMed  Google Scholar 

  90. Wondu W-M (2002) A method for simultaneous detection of multiple microbial antigens in biological specimens from mastitic animals. Patent application number WO 2002075310 A

  91. Huang S-H, Wei H-C, Lee Y-C (2007) One-step immunochromatographic assay for the detection of Staphylococcus aureus. Food Cont 18:893–897. doi:10.1016/j.foodcont.2006.05.005

    Article  CAS  Google Scholar 

  92. Badiou C, Dumitrescu O, George N, Forbes AR, Drougka E, Chan KS, Ramdani-Bouguessa N, Meugnier H, Bes M, Vandenesch F, Etienne J, Hsu LY, Tazir M, Spiliopoulou I, Nimmo GR, Hulten KG, Lina G (2010) Rapid detection of Staphylococcus aureus Panton–Valentine leukocidin in clinical specimens by enzyme-linked immunosorbent assay and immunochromatographic tests. J Clin Microbiol 48:1384–1390. doi:10.1128/JCM.02274-09

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dongfen J, Yanxu H, Depeng C, Farong C (2012) Colloidal gold detection card for detecting Staphylococcus aureus and preparation method thereof. Patent application number CN102818894 (A)

  94. Lin L, Lu X (2013) Kit for rapidly detecting Staphylococcus aureus in quick-frozen food and detection method thereof. Patent application number CN102914649 (A)

  95. Junfang X, Qing L (2012) Immunocapture PCR (polymerase chain reaction) detection kit of Staphylococcus aureus and using method of kit. Patent application number CN102304585 (A)

  96. Mujawar LH, Moers A, Norde W, van Amerongen A (2013) Rapid mastitis detection assay on porous nitrocellulose membrane slides. Anal Bioanal Chem 405:7469–7476. doi:10.1007/s00216-013-7192-7

    Article  CAS  PubMed  Google Scholar 

  97. Mirhabibollahi B, Brooks JL, Kroll RG (1990) Development and performance of an enzyme-linked amperometric immunosensor for the detection of Staphylococcus aureus in foods. J Appl Bacteriol 68:577–585. doi:10.1111/j.1365-2672.1990.tb05223.x

    Article  CAS  PubMed  Google Scholar 

  98. Mirhabibollahi B, Brooks JL, Kroll RG (1990) A semi-homogeneous amperometric immunosensor for protein A-bearing Staphylococcus aureus in foods. Appl Microbiol Biotechnol 34:242–247. doi:10.1007/BF00166789

    Article  CAS  PubMed  Google Scholar 

  99. Mirhabibollahi B, Brooks JL, Kroll RG (1990) An improved amperometric immunosensor for the detection and enumeration of protein A-bearing Staphylococcus aureus. Lett Appl Microbiol 11:119–122. doi:10.1111/j.1472-765X.1990.tb00138.x

    Article  CAS  PubMed  Google Scholar 

  100. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2008) Immunosensor for the determination of Staphylococcus aureus using a tyrosinase–mercaptopropionic acid modified electrode as an amperometric transducer. Anal Bioanal Chem 391:837–845. doi:10.1007/s00216-007-1810-1

    Article  PubMed  Google Scholar 

  101. National Mastitis Council (2001) National Mastitis Council recommended mastitis control program. http://www.nmconline.org. Accessed 28 Mar 2006

  102. Milner P, Page KL, Hillerton JE (1997) The effects of early antibiotic treatment following diagnosis of mastitis detected by a change in the electrical conductivity of milk. J Dairy Sci 80:859–863. doi:10.3168/jds.S0022-0302 (97)76008-9

    Article  CAS  PubMed  Google Scholar 

  103. Lakshmi BB, Mach PA, Sridhar DV, Dillow AK, Free BM, Huizinga JS (2005) Staphylococcus detection. Patent application number CA 2552113 (A1)

  104. Kensho S (2009) Method for detecting or identifying Staphylococcus aureus, and detection kit. Patent application number JP2009031009 (A)

  105. Zhou S-F (2009) Method of rapidly detecting Staphylococcus aureus. Patent application number TW200925280 (A)

  106. Kesheng L, Huifen D, Guorong M, Zheng Y, Haifei Z, Zhiyuan L, Yuanxing Z (2011) Detection method of Staphylococcus aureus and gold-labeled rapid diagnosis kit for same and preparation method thereof. Patent application number CN102135540 (A)

  107. Kaili N, Yuan Z, Kuan X, Hebai S (2012) Method for detecting Staphylococcus aureus. Patent application number CN102645536 (A)

  108. Zhao Y, Chen Y, Gu M (2012) Method for rapidly detecting and screening Staphylococcus aureus. Patent application number CN102590506 (A)

  109. de Ávila BEF, Pedrero M, Campuzano S, Escamilla-Gómez V, Pingarrón JM (2012) Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Anal Bioanal Chem 403:917–925. doi:10.1007/s00216-012-5738-8

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. B. Ribon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabres-Klein, M.H., Aguilar, A.P., Silva, M.P. et al. Moving towards the immunodiagnosis of staphylococcal intramammary infections. Eur J Clin Microbiol Infect Dis 33, 2095–2104 (2014). https://doi.org/10.1007/s10096-014-2181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2181-0

Keywords

Navigation