Skip to main content
Log in

Discrete projection methods for Fredholm–Hammerstein integral equations using Kumar and Sloan technique

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The proposed work discusses discrete collocation and discrete Galerkin methods for second kind Fredholm–Hammerstein integral equations on half line \([0,\infty )\) using Kumar and Sloan technique. In addition, the finite section approximation method is applied to transform the domain of integration from \([0, \infty )\) to \([0,\alpha ],~ \alpha >0\). In contrast to previous studies in which the optimal order of convergence is achieved for projection methods, we attained superconvergence rates in uniform norm using piecewise polynomial basis function. Moreover, these superconvergence rates are further enhanced by using discrete multi-projection (collocation and Galerkin) methods. In order to support the provided theoretical framework, numerical examples are included as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. Chapman and Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  2. Amini, S., Sloan, I.H.: Collocation methods for second kind integral equations with non-compact operators. J. Integral Equ. Appl. 2(1), 1–30 (1989)

    Article  Google Scholar 

  3. Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line. Numer. Math. 51(6), 599–614 (1987)

    Article  MathSciNet  Google Scholar 

  4. Anselone, P.M., Sloan, I.H.: Numerical solutions of integral equations on the half line II. The Wiener–Hopf case. J. Integral Equ. Appl. 1(2), 203–225 (1988)

    Article  MathSciNet  Google Scholar 

  5. Anselone, P.M., Lee, J.W.: Nonlinear integral equations on the half line. J. Integral Equ. Appl. 4(1), 1–14 (1992)

    MathSciNet  Google Scholar 

  6. Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1, 17–54 (1988)

    MathSciNet  Google Scholar 

  7. Atkinson, K., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13(2), 195–213 (1993)

    Article  MathSciNet  Google Scholar 

  8. Atkinson, K.: The numerical solution of integral equations on the half-line. SIAM J. Numer. Anal. 6(3), 375–397 (1969)

    Article  MathSciNet  Google Scholar 

  9. Assari, P.: A meshless local Galerkin method for the numerical solution of Hammerstein integral equations based on the moving least squares technique. J. Appl. Anal. Comput. 9(1), 75–104 (2019)

    MathSciNet  Google Scholar 

  10. Assari, P.: Thin plate spline Galerkin scheme for numerically solving nonlinear weakly singular Fredholm integral equations. Appl. Anal. 98(11), 2064–2084 (2019)

    Article  MathSciNet  Google Scholar 

  11. Assari, P., Asadi-Mehregan, F.: Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int. J. Numer. Model. Electro. Netw. Devices Fields 2(1), e2488 (2019)

    Article  Google Scholar 

  12. Chen, Z., Xu, Y., Zhao, J.: The discrete Petrov–Galerkin method for weakly singular integral equations. J. Integral Equ. Appl. 11(1), 1–35 (1999)

    Article  MathSciNet  Google Scholar 

  13. Das, P., Nelakanti, G.: Error analysis of discrete Legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(5), 549–574 (2017)

    Article  MathSciNet  Google Scholar 

  14. Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral Galerkin method for Urysohn integral equations. Int. J. Comput. Math. 95(3), 465–489 (2018)

    Article  MathSciNet  Google Scholar 

  15. Eggermont, P.P.B.: On noncompact Hammerstein integral equations and a nonlinear boundary value problem for the heat equation. J. Integral Equ. Appl. 4(1), 47–68 (1992)

    Article  MathSciNet  Google Scholar 

  16. Ganesh, M., Joshi, M.C.: Numerical solutions of nonlinear integral equations on the half line. Numer. Funct. Anal. Optim. 10(11–12), 1115–1138 (1989)

    Article  MathSciNet  Google Scholar 

  17. Golberg, M.A., Chen, C.S., Fromme, J.A.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997)

    Google Scholar 

  18. Golberg, M., Bowman, H.: Optimal convergence rates for some discrete projection methods. Appl. Math. Comput. 96(2–3), 237–271 (1998)

    MathSciNet  Google Scholar 

  19. Graham, I.G., Mendes, W.R.: Nystrom-product integration for Wiener–Hopf equations with applications to radiative transfer. IMA J. Numer. Anal. 9(2), 261–284 (1989)

    Article  MathSciNet  Google Scholar 

  20. Khachatryan, A.K., Khachatryan, K.A.: Hammerstein–Nemytskii type nonlinear integral equations on half-line in space \( L_1 (0,+\infty )\cap L_ {\infty }(0,+\infty ) \). Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica. 52(1), 89–100 (2013)

    MathSciNet  Google Scholar 

  21. Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein integral equations. Math. Comput. 48(178), 585–593 (1987)

    Article  MathSciNet  Google Scholar 

  22. Long, G., Nelakanti, G., Panigrahi, B.L., Sahani, M.M.: Discrete multi-projection methods for eigen-problems of compact integral operators. Appl. Math. Comput. 217(8), 3974–3984 (2010)

    MathSciNet  Google Scholar 

  23. Nahid, N., Nelakanti, G.: Discrete projection methods for Hammerstein integral equations on the half-line. Calcolo 57(4), 1–42 (2020)

    Article  MathSciNet  Google Scholar 

  24. Nahid, N., Das, P., Nelakanti, G.: Projection and multi projection methods for nonlinear integral equations on the half-line. J. Comput. Appl. Math. 359, 119–144 (2019)

    Article  MathSciNet  Google Scholar 

  25. Nigam, R., Nahid, N., Chakraborty, S., Nelakanti, G.: Superconvergence results for non-linear Hammerstein integral equations on unbounded domain. Numer. Algorithms 94, 1243–1279 (2023)

    Article  MathSciNet  Google Scholar 

  26. Rahmoune, A.: On the numerical solution of integral equations of the second kind over infinite intervals. J. Appl. Math. Comput. 66(1–2), 129–148 (2021)

    Article  MathSciNet  Google Scholar 

  27. Rahmoune, A.: Spectral collocation method for solving Fredholm integral equations on the half-line. Appl. Math. Comput. 219(17), 9254–9260 (2013)

    MathSciNet  Google Scholar 

  28. Remili, W., Rahmoune, A.: Modified Legendre rational and exponential collocation methods for solving nonlinear Hammerstein integral equations on the semi-infinite domain. Int. J. Comput. Math. 99(10), 2018–2041 (2022)

    Article  MathSciNet  Google Scholar 

  29. Schumaker, L.: Spline Functions: Basic Theory. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  30. Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations. USSR Comput. Math. Math. Phys. 7(4), 1–41 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the anonymous reviewers for their insightful and constructive comments which increased the quality of the paper.

Funding

The research of Dr. Gnaneshwar Nelakanti has been supported by the Science and Engineering Research Board (SERB) of India under the scheme “Mathematical Research Impact Centric Support (MATRICS), MTR/2021/000171.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Nigam.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigam, R., Nahid, N., Chakraborty, S. et al. Discrete projection methods for Fredholm–Hammerstein integral equations using Kumar and Sloan technique. Calcolo 61, 21 (2024). https://doi.org/10.1007/s10092-024-00573-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-024-00573-5

Keywords

Mathematics Subject Classification

Navigation