Skip to main content
Log in

Explicit and structure-preserving exponential wave integrator Fourier pseudo-spectral methods for the Dirac equation in the simultaneously massless and nonrelativistic regime

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We propose two explicit and structure-preserving exponential wave integrator Fourier pseudo-spectral (SPEWIFP) methods for the Dirac equation in the simultaneously massless and nonrelativistic regime. In this regime, the solution of Dirac equation is highly oscillatory in time because of the small parameter \(0 <\varepsilon \ll 1\) which is inversely proportional to the speed of light. The proposed methods are proved to be time symmetric, stable only under the condition \(\tau \lesssim 1\) and preserve the modified energy and modified mass in the discrete level. Although our methods can only preserve the modified energy and modified mass instead of the original energy and mass, our methods are explicit and greatly reduce the computational cost compared to the traditional structure-preserving methods which are often implicit. Through rigorous error analysis, we give the error bounds of the methods at \(O(h^{m_0} + \tau ^2/\varepsilon ^2)\) where h is mesh size, \(\tau \) is time step and the integer \(m_0\) is determined by the regularity conditions. These error bounds indicate that, to obtain the correct numerical solution in the simultaneously massless and nonrelativistic regime, our methods request the \(\varepsilon \)-scalability as \(h = O(1)\) and \(\tau = O(\varepsilon )\) which is better than the \(\varepsilon \)-scalability of the finite difference (FD) methods: \(h =O(\varepsilon ^{1/2})\) and \(\tau = O(\varepsilon ^{3/2})\). Numerical experiments confirm that the theoretical results in this paper are correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abanin, D.A., Morozov, S.V., Ponomarenko, L.A., Gorbachev, R.V., Mayorov, A.S., Katsnelson, M.I., Watanabe, K., Taniguchi, T., Novoselov, K.S., Levitov, L.S., Geim, A.K.: Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011)

    ADS  CAS  PubMed  Google Scholar 

  2. Anderson, C.D.: The positive electron. Phys. Rev. 43, 491–498 (1933)

    ADS  CAS  Google Scholar 

  3. Antoine, X., Lorin, E., Sater, J., Fillion-Gourdeau, F., Bandrauk, A.D.: Absorbing boundary conditions for relativistic quantum mechanics equations. J. Comput. Phys. 277, 268–304 (2014)

    ADS  MathSciNet  Google Scholar 

  4. Antoine, X., Fillion-Gourdeau, F., Lorin, E., MacLean, S.: Pseudospectral computational methods for the time-dependent Dirac equation in static curved spaces. J. Comput. Phys. 411, 109412 (2020)

    MathSciNet  CAS  Google Scholar 

  5. Antoine, X., Lorin, E.: A simple pseudospectral method for the computation of the time-dependent Dirac equation with perfectly matched layers. J. Comput. Phys. 395, 583–601 (2019)

    ADS  MathSciNet  Google Scholar 

  6. Antoine, X., Lorin, E.: Computational performance of simple and efficient sequential and parallel Dirac equation solvers. Comput. Phys. Commun. 220, 150–172 (2017)

    ADS  MathSciNet  CAS  Google Scholar 

  7. Arnold, A., Steinrück, H.: The ‘electromagnetic’ Wigner equation for an electron with spin. ZAMP 40, 793–815 (1989)

    ADS  MathSciNet  Google Scholar 

  8. Bao, W., Cai, Y., Jia, X., Yin, J.: Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci China Math 59, 1461–1494 (2016)

    MathSciNet  Google Scholar 

  9. Bao, W., Cai, Y., Jia, X., Tang, Q.: A uniformly accurate multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 54, 1785–1812 (2016)

    MathSciNet  Google Scholar 

  10. Bao, W., Cai, Y., Jia, X., Tang, Q.: Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J. Sci. Comput. 71, 1094–1134 (2017)

    MathSciNet  Google Scholar 

  11. Bao, W., Yin, J.: A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation. Res. Math. Sci. 6, 11 (2019)

    MathSciNet  Google Scholar 

  12. Bao, W., Cai, Y., Yin, J.: Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic regime. Math. Comp. 89, 2141–2173 (2020)

    MathSciNet  Google Scholar 

  13. Bao, W., Feng, Y., Yin, J.: Improved uniform error bounds on time-splitting methods for the long-time dynamics of the Dirac equation with small potentials. Multiscale Model. Simul. 20, 1040–1062 (2022)

    MathSciNet  Google Scholar 

  14. Bechouche, P., Mauser, N., Selberg, S.: On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit. J. Hyper. Differ. Equat. 2, 129–182 (2005)

    MathSciNet  Google Scholar 

  15. Braun, J.W., Su, Q., Grobe, R.: Numerical approach to solve the time-dependent Dirac equation. Phys. Rev. A 59, 604–612 (1999)

    ADS  CAS  Google Scholar 

  16. Brinkman, D., Heitzinger, C., Markowich, P.A.: A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene. J. Comput. Phys. 257, 318–332 (2014)

    ADS  MathSciNet  CAS  Google Scholar 

  17. Carles, R., Markowich, P.A., Sparber, C.: Semiclassical asymptotics for weakly nonlinear Bloch waves. J. Statist. Phys. 117, 343–375 (2004)

    ADS  MathSciNet  Google Scholar 

  18. Chartier, P., Méhats, F., Thalhammer, M., Zhang, Y.: Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. Math. Comp. 85, 2863–2885 (2016)

    MathSciNet  Google Scholar 

  19. Cirincione, R.J., Chernoff, P.R.: Dirac and Klein-Gordon equations: convergence of solutions in the nonrelativistic limit. Commun. Math. Phys. 79, 33–46 (1981)

    ADS  MathSciNet  Google Scholar 

  20. Das, A.: General solutions of Maxwell-Dirac equations in 1+1-dimensional space-time and spatially confined solution. J. Math. Phys. 34, 3986–3999 (1993)

    ADS  MathSciNet  Google Scholar 

  21. Das, A., Kay, D.: A class of exact plane wave solutions of the Maxwell-Dirac equations. J. Math. Phys. 30, 2280–2284 (1989)

    ADS  MathSciNet  Google Scholar 

  22. Davydov, A.S.: Quantum mechanics. Pergamon Press, Oxford (1976)

    Google Scholar 

  23. Esteban, M., Séré, E.: Existence and multiplicity of solutions for linear and nonlinear Dirac problems. Partial Differ. Equ. Appl. 12, 107–112 (1997)

    MathSciNet  Google Scholar 

  24. Fefferman, C.L., Weinstein, M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Socs 25, 1169–1220 (2012)

    MathSciNet  Google Scholar 

  25. Fefferman, C.L., Weinstein, M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326, 251–286 (2014)

    ADS  MathSciNet  Google Scholar 

  26. Feng, Y., Ma, Y.: Error bounds of fourth-order compact finite difference methods for the Dirac equation in the massless and nonrelativistic regime. Numer. Methods Partial Differ. Equ. 39, 955–974 (2023)

    MathSciNet  Google Scholar 

  27. Feng, Y., Xu, Z.G., Yin, J.: Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials. Appl. Numer. Math. 172, 50–66 (2022)

    MathSciNet  Google Scholar 

  28. Feng, Y., Yin, J.: Spatial resolution of different discretizations over long-time for the Dirac equation with small potentials. J. Comput. Appl. Math. 412, 114342 (2022)

    MathSciNet  Google Scholar 

  29. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Resonantly enhanced pair production in a simple diatomic model. Phys. Rev. Lett. 110, 013002 (2013)

    ADS  PubMed  Google Scholar 

  30. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling. Comput. Phys. Commun. 183, 1403–1415 (2012)

    ADS  MathSciNet  CAS  Google Scholar 

  31. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry. J. Comput. Phys. 272, 559–587 (2014)

    ADS  MathSciNet  CAS  Google Scholar 

  32. Gesztesy, F., Grosse, H., Thaller, B.: A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles. Ann. Inst. Henri Poincaré Phys. Theor. 40, 159–174 (1984)

    MathSciNet  CAS  Google Scholar 

  33. Gross, L.: The Cauchy problem for the coupled Maxwell and Dirac equations. Commun. Pure Appl. Math. 19, 1–15 (1966)

    MathSciNet  Google Scholar 

  34. Gosse, L.: A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation. BIT Numer. Math. 55, 433–458 (2015)

    MathSciNet  Google Scholar 

  35. Guo, B.-Y., Shen, J., Xu, C.-L.: Spectral and pseudospectral approximations using Hermite functions: Application to the Dirac equation. Adv. Comput. Math. 19, 35–55 (2003)

    MathSciNet  CAS  Google Scholar 

  36. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, structure-preserving algorithms for ordinary differential equations, second edition Springer-Verlag, Berlin (2006)

    Google Scholar 

  37. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 12, 399–450 (2003)

    ADS  MathSciNet  Google Scholar 

  38. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2000)

    ADS  MathSciNet  Google Scholar 

  39. Li, J.: Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation. Appl. Numer. Math. 172, 1–26 (2022)

    MathSciNet  CAS  Google Scholar 

  40. Li, J., Wang, T.: Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. Appl. Numer. Math. 162, 150–170 (2021)

    MathSciNet  Google Scholar 

  41. Li, J., Zhu, L.: An uniformly accurate exponential wave integrator Fourier pseudo-spectral method with structure-preservation for long-time dynamics of the Dirac equation with small potentials. Numer. Algorithms 92, 1367–1401 (2023)

    MathSciNet  Google Scholar 

  42. Li, J.: Error analysis of a time fourth-order exponential wave integrator Fourier pseudo-spectral method for the nonlinear Dirac equatio. Int. J. Comput. Math. 99, 791–807 (2022)

    MathSciNet  Google Scholar 

  43. Li, J., Jin, X.: Structure-preserving exponential wave integrator methods and the long-time convergence analysis for the Klein-Gordon-Dirac equation with the small coupling constant. Numer. Methods Partial Differ. Equ. 39, 3375–3416 (2023)

    MathSciNet  Google Scholar 

  44. Ma, Y., Yin, J.: Error estimates of finite difference methods for the Dirac equation in the massless and nonrelativistic regime. Numer. Algorithms 89, 1415–1440 (2022)

    MathSciNet  Google Scholar 

  45. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    MathSciNet  Google Scholar 

  46. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  Google Scholar 

  47. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  CAS  PubMed  Google Scholar 

  48. Ring, P.: Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193–263 (1996)

    ADS  CAS  Google Scholar 

  49. Schratz, K., Wang, Y., Zhao, X.: Low-regularity integrators for nonlinear Dirac equations. Math. Comp. 90, 189–214 (2021)

    MathSciNet  Google Scholar 

  50. Shen, J., Tang, T., Wang, L.: Spectral methods: algorithms, analysis and applications. Springer-Verlag, Berlin Heidelberg (2011)

    Google Scholar 

  51. Smith, G.D.: Numerical solution of partial differential equations. Oxford University Press, London (1965)

    Google Scholar 

  52. Sparber, C., Markowich, P.A.: Semiclassical asymptotics for the Maxwell-Dirac system. J. Math. Phys. 44, 4555–4572 (2003)

    ADS  MathSciNet  CAS  Google Scholar 

  53. Spohn, H.: Semiclassical limit of the Dirac equation and spin precession. Ann. Phys. 282, 420–431 (2000)

    ADS  MathSciNet  CAS  Google Scholar 

  54. Wu, H., Huang, Z., Jin, S., Yin, D.: Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun. Math. Sci. 10, 1301–1315 (2012)

    MathSciNet  Google Scholar 

  55. Xu, J., Shao, S., Tang, H.: Numerical methods for nonlinear Dirac equation. J. Comput. Phys. 245, 131–149 (2013)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable suggestions, which help improve this paper significantly.

Funding

The research was supported in part by Natural Science Foundation of Hebei Province (No. A2021205036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Explicit and structure-preserving exponential wave integrator Fourier pseudo-spectral methods for the Dirac equation in the simultaneously massless and nonrelativistic regime. Calcolo 61, 3 (2024). https://doi.org/10.1007/s10092-023-00554-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00554-0

Keywords

Navigation