Skip to main content
Log in

A streamline-derivative-based local projection stabilization virtual element method for nonlinear convection–diffusion–reaction equation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We present a local projection stabilization for the virtual element discretization of the nonlinear convection–diffusion–reaction equation. We consider a streamline-derivative-based term for stabilization in the discrete formulation that preserves the stability property. We prove the optimal convergence estimates in the \(H^1\)- and \(L^2\)-norms. Numerical experiments consisting of different types of interior and boundary layers are conducted. The proposed numerical method captures the solution very well away from the layers. The numerical results show the proposed method’s better performance in comparison with the gradient-based local projection stabilization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morton, K.W.: Numerical Solution of Convection–Diffusion Problems. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  2. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations, Convection–Diffusion and Flow Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  3. Zuzana, K., Karol, M.: An adaptive finite volume scheme for solving nonlinear diffusion equations in image processing. J. Vis. Commun. Image Represent. 13(1), 22–35 (2002)

    Google Scholar 

  4. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 27, 387–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burman, E., Fernandez, M.A.: Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107, 39–77 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Codina, R.: Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math. 58, 264–283 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations in Numerical Mathematics and Advances Applications, M Feistauer, V Dolejsi, P Knobloch, and K Najzar, pp. 123–130. Springer, Berlin (2004)

    Google Scholar 

  10. Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27, 116–147 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Da Veiga, L.B., Lipnikov, P., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems. Modeling, Simulations and Applications, vol. 11. Springer, Berlin (2014)

    MATH  Google Scholar 

  12. Beirao Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beirao Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchikker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24, 1541–1574 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model Numer. Anal. 48, 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beirao Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: H(div) and H(curl) conforming virtual element methods. Numer. Math. 133(2), 303–332 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Brezzi, F., Marini, L.D.: Virtual element and discontinuous Galerkin methods. Math. Appl. 157, 209–221 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Beirao Da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Antonietti, P.F., Beirao Da Veiga, L., Scacchi, S., Verani, M.: A \({C}^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35(1), 222–245 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Adak, D., Natarajan, S., Natarajan, E.: Virtual element method for semilinear elliptic problems on polygonal meshes. Appl. Numer. Math. 145, 175–187 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, X., Chen, Z.: The nonconforming virtual element method for the Navier–Stokes equations. Adv. Comput. Math. 45(1), 51–74 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialo, S.: Order preserving SUPG stabilization for the virtual element formulation of advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 311, 18–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Arrutselvi, M., Natarajan, E.: Virtual element method for nonlinear convection–diffusion–reaction equation on polygonal meshes. Int. J. Comput. Math. 98(9), 1852–1876 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Arrutselvi, M., Natarajan, E., Natarajan, S.: Virtual element method for the quasilinear convection–diffusion–reaction equation on polygonal meshes. Adv. Comput. Math. 48(6), 78 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48(2), 672–687 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, L., Feng, M.: A local projection stabilization virtual element method for convection–diffusion–reaction equation. Appl. Math. Comput. 411, 126526 (2021)

    MathSciNet  Google Scholar 

  28. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, New York (2008)

    Google Scholar 

  30. Cangiani, A., Chatzipantelidis, A., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. 40(4), 2450–2472 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43(6), 2544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55, 1–23 (2017)

    MathSciNet  Google Scholar 

  34. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25(8), 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. He, M., Sun, P., Wang, C., Huang, Z.: A two-grid combined finite element-upwind finite volume method for a nonlinear convection-dominated diffusion reaction equation. J. Comput. Appl. Math. 288, 223–232 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Persson, P.O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier–Stokes equations. SIAM J. Sci. Comput. 30(6), 2709–2733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Knobloch, P., Lube, G.: Local projection stabilization for advection–diffusion–reaction problems: one-level vs. two-level approach. Appl. Numer. Math. 59(12), 2891–2907 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection–diffusion problems with mixed boundary conditions. Electron. Trans. Numer. Anal. 32, 90–105 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Knobloch, P.: A generalization of the local projection stabilization for convection–diffusion–reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Natarajan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Natarajan, E. A streamline-derivative-based local projection stabilization virtual element method for nonlinear convection–diffusion–reaction equation. Calcolo 60, 46 (2023). https://doi.org/10.1007/s10092-023-00539-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00539-z

Keywords

Mathematics Subject Classification

Navigation