Skip to main content
Log in

A virtual element method for the elasticity problem allowing small edges

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we analyze a virtual element method for the two dimensional elasticity problem allowing small edges. With this approach, the classic assumptions on the geometrical features of the polygonal meshes can be relaxed. In particular, we consider only star-shaped polygons for the meshes. Suitable error estimates are presented, where a rigorous analysis on the influence of the Lamé constants in each estimate is presented. We report numerical tests to assess the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P., Beirão da Veiga, L., Manzini, G.: The Virtual Element Method and Its Applications, vol. 31. SEMA SIMAI Springer Series, Springer Cham, pp. xxiv+605 (2022)

  3. Artioli, E., Beirão da Veiga, L., Lovadina, C., Sacco, E.: Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput. Mech. 60, 355–377 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Artioli, E., de Miranda, S., Lovadina, C., Patruno, L.: A dual hybrid virtual element method for plane elasticity problems. ESAIM Math. Model. Numer. Anal. 54, 1725–1750 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrios, T.P., Gatica, G.N., González, M., Heuer, N.: A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity. M2AN Math. Model. Numer. Anal. 40(2006), 843–869 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24, 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27, 2557–2594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  10. Brenner, S.C., Sung, L.-Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28, 1291–1336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for a pseudostress-based formulation of linear elasticity. Appl. Numer. Math. 135, 423–442 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, S., Chen, L.: Anisotropic error estimates of the linear virtual element method on polygonal meshes. SIAM J. Numer. Anal. 56, 2913–2939 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem. Appl. Numer. Math. 61, 615–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Droniou, J., Yemm, L.: Robust hybrid high-order method on polytopal meshes with small faces. Comput. Methods Appl. Math. 22, 47–71 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gatica, G.N., Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71, 585–614 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grisvard, P.: Problèmes aux limites dans les polygones. Mode d’emploi, EDF Bull. Direction Études Rech. Sér. C Math. Inform., pp. 3, 21–59 (1986)

  17. Lepe, F., Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the Steklov eigenvalue problem allowing small edges. J. Sci. Comput. 88, 44–21 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Y., Wang, J.: A locking-free \(P_0\) finite element method for linear elasticity equations on polytopal partitions. IMA J. Numer. Anal. 42, 3464–3498 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Márquez, A., Meddahi, S., Tran, T.: Analyses of mixed continuous and discontinuous Galerkin methods for the time harmonic elasticity problem with reduced symmetry. SIAM J. Sci. Comput. 37, A1909–A1933 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mora, D., Rivera, G.: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J. Numer. Anal. 40, 322–357 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25, 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguyen-Thanh, V.M., Zhuang, X., Nguyen-Xuan, H., Rabczuk, T., Wriggers, P.: A virtual element method for 2D linear elastic fracture analysis. Comput. Methods Appl. Mech. Eng. 340, 366–395 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, X., Liu, Z., Zhang, B., Feng, M.: A low-order locking-free virtual element for linear elasticity problems. Comput. Math. Appl. 80, 1260–1274 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tushar, J., Kumar, A., Kumar, S.: Virtual element methods for general linear elliptic interface problems on polygonal meshes with small edges. Comput. Math. Appl. 122, 61–75 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, C., Zhang, S.: A weak Galerkin method for elasticity interface problems. J. Comput. Appl. Math. 419, 114726–14 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, B., Feng, M.: Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation. Appl. Math. Comput. 328, 1–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, B., Zhao, J., Yang, Y., Chen, S.: The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378, 394–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

D. Amigo and F. Lepe were partially supported by DIUBB through project 2120173 GI/C Universidad del Bío-Bío and ANID-Chile through FONDECYT project 11200529 (Chile). G. Rivera was partially supported by Universidad de Los Lagos through regular project R02/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Lepe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amigo, D., Lepe, F. & Rivera, G. A virtual element method for the elasticity problem allowing small edges. Calcolo 60, 28 (2023). https://doi.org/10.1007/s10092-023-00522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00522-8

Keywords

Mathematics Subject Classification

Navigation