Skip to main content
Log in

Fast enclosure for the minimal nonnegative solution to the nonsymmetric T-Riccati equation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

A fast algorithm is proposed for numerically computing an interval matrix containing the minimal nonnegative solution to the nonsymmetric T-Riccati equation. The cost of this algorithm is cubic plus that for numerically solving the equation. The algorithm proves that the solution contained in the interval matrix is unique and equal to the minimal nonnegative solution. Numerical results show the efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benner, P., Iannazzo, B., Meini, B., Palitta D.: Palindromic linearization and numerical solution of nonsymmetric algebraic \(T\)-Riccati equations. BIT Numer. Math. (2022). https://doi.org/10.1007/s10543-022-00926-y

  2. Benner, P., Palitta, D.: On the solution of the nonsymmetric T-Riccati equation. Electron. Trans. Numer. Anal. 54, 68–88 (2021)

    Article  MathSciNet  Google Scholar 

  3. Fiedler, M., Pt\(\acute{\text{a}}\)k, V.: On matrices with non-positive off-diagonal elements and positive principal minors. Czech. Math. J. 12, 382–400 (1962)

  4. Haqiri, T., Poloni, F.: Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations. J. Comput. Appl. Math. 313, 515–535 (2017)

    Article  MathSciNet  Google Scholar 

  5. Hashemi, B.: Verified computation of symmetric solutions to continuous-time algebraic Riccati matrix equations. Proc. SCAN conference, Novosibirsk, pp. 54–56 (2012). http://conf.nsc.ru/files/conferences/scan2012/139586/Hashemi-scan2012.pdf

  6. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM Publications, Philadelphia (2008)

    Book  Google Scholar 

  7. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  8. Luther, W., Otten, W.: Verified calculation of the solution of algebraic Riccati equation. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 105–118. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  9. Luther, W., Otten, W., Traczinski, H.: Verified calculation of the solution of continuous- and discrete time algebraic Riccati equation. Schriftenreihe des Fachbereichs Mathematik der Gerhard-Mercator-Universit\(\ddot{\text{ a }}\)t Duisburg, Duisburg, SM-DU-422 (1998)

  10. Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric \(M\)-matrix. Math. Comput. 31, 148–162 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Miyajima, S.: Fast verified computation for solutions of continuous-time algebraic Riccati equations. Jpn. J. Ind. Appl. Math. 32, 529–544 (2015)

    Article  MathSciNet  Google Scholar 

  12. Miyajima, S.: Fast verified computation for stabilizing solutions of discrete-time algebraic Riccati equations. J. Comput. Appl. Math. 319, 352–364 (2017)

    Article  MathSciNet  Google Scholar 

  13. Miyajima, S.: Fast verified computation for solutions of algebraic Riccati equations arising in transport theory. Numer. Linear Algebra Appl. 24, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  14. Miyajima, S.: Fast verified computation for the minimal nonnegative solution of the nonsymmetric algebraic Riccati equation. Comput. Appl. Math. 37, 4599–4610 (2018)

    Article  MathSciNet  Google Scholar 

  15. Miyajima, S.: Verified computation for the Hermitian positive definite solution of the conjugate discrete-time algebraic Riccati equation. J. Comput. Appl. Math. 350, 80–86 (2019)

    Article  MathSciNet  Google Scholar 

  16. Miyajima, S.: Robust verification algorithm for stabilizing solutions of discrete-time algebraic Riccati equations. Jpn. J. Ind. Appl. Math. 36, 763–776 (2019)

    Article  MathSciNet  Google Scholar 

  17. Miyajima, S.: Verified computation for the geometric mean of two matrices. Jpn. J. Ind. Appl. Math. 38, 211–232 (2021)

    Article  MathSciNet  Google Scholar 

  18. Oozawa, M., Sogabe, T., Miyatake, Y., Zhang, S.-L.: On a relationship between the T-congruence Sylvester equation and the Lyapunov equation. J. Comput. Appl. Math. 329, 51–56 (2018)

    Article  MathSciNet  Google Scholar 

  19. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–107. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  20. Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic. Acta Numer 19, 287–449 (2010)

    Article  MathSciNet  Google Scholar 

  21. Teran, F.D., Dopico, F.M.: Consistency and efficient solution of the Sylvester equation for \(\star\)-congruence. Electron. J. Linear Algebra 22, 849–863 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Miyajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by JSPS KAKENHI Grant Numbers JP16K05270, JP21K03363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyajima, S. Fast enclosure for the minimal nonnegative solution to the nonsymmetric T-Riccati equation. Calcolo 59, 31 (2022). https://doi.org/10.1007/s10092-022-00475-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-022-00475-4

Keywords

Mathematics Subject Classification

Navigation