Skip to main content
Log in

Oversampling collocation method for the Volterra integral equation with contaminated data

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, an oversampling collocation method based on shifted generalized Jacobi functions as a set of basis is proposed to find the numerical solutions of Volterra integral equations with contaminated data. We proved that the oversampling collocation method decreases the covariance matrix of the coefficients vector of the approximated solution in the sense of 2-norm, which indicates the oversampling collocation method is more robust(which means anti-jamming of white noise) than the standard collocation method when the right side of the Volterra equation has contaminated data. Numerical experiments demonstrate the effectiveness of this method and its consistency with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Levinson, N.: A nonlinear Volterra equation arising in the theory of superfluidity. J. Math. Anal. Appl. 1(1), 1–11 (1960)

    Article  Google Scholar 

  2. Wang, F.J.: Asymptotic behavior of some deterministic epidemic models. SIAM J. Math. Anal. 9(3), 529–534 (1978)

    Article  MathSciNet  Google Scholar 

  3. Shaw, S., Warby, M.K., Whiteman, J.R.: Error estimates with sharp constants for a fading memory Volterra problem in linear solid viscoelasticity. SIAM J. Numer. Anal. 34(3), 1237–1254 (1997)

    Article  MathSciNet  Google Scholar 

  4. Volterra, V.: Theory of Functionals and of Integral and Integro-differential Equations. Blackie and Son Ltd., London and Glasgow (1930)

    MATH  Google Scholar 

  5. Zhao, D., Luo, M.: Representations of acting processes and memory effects: general fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 346, 531–544 (2019)

    Article  MathSciNet  Google Scholar 

  6. Zhao, D., Sun, H.G.: Anomalous relaxation model based on the fractional derivative with a Prabhakar-like kernel. Z. Angew. Math. Phys. 70(2), 42 (2019)

    Article  MathSciNet  Google Scholar 

  7. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  8. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  9. Brunner, H.: On the history of numerical methods for Volterra integral equations. CWI Newslett. 11, 3–20 (1986)

    MathSciNet  Google Scholar 

  10. Mirzaee, F., Hadadiyan, E.: A collocation technique for solving nonlinear stochastic Ito-Volterra integral equations. Appl. Math. Comput. 247, 1011–1020 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Mohammadi, F.: A wavelet-based computational method for solving stochastic Ito-Volterra integral equations. J. Comput. Phys. 298, 254–265 (2015)

    Article  MathSciNet  Google Scholar 

  12. Mirzaee, F., Samadyar, N.: Application of operational matrices for solving system of linear Stratonovich Volterra integral equation. J. Comput. Appl. Math. 320, 164–175 (2017)

    Article  MathSciNet  Google Scholar 

  13. Khodabin, M., Maleknejad, K., Damercheli, T.: Approximate solution of the stochastic Volterra integral equations via expansion method. Int. J. Ind. Math. 6(1), 41–48 (2014)

    Google Scholar 

  14. Shen, J., Sheng, C., Wang, Z.: Generalized jacobi spectral-Galerkin method for nonlinear volterra integral equations with weakly singular kernels. J. Math. Study 48(4), 315–329 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gibbs, A., Hewett, D.P., Huybrechs, D., Parolin, E.: Fast hybrid numerical-asymptotic boundary element methods for high frequency screen and aperture problems based on least-squares collocation. SN Partial Differ. Equ. Appl. 1, 21 (2020)

    Article  MathSciNet  Google Scholar 

  16. Stewart, G.W.: On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19(4), 634–662 (1977)

    Article  MathSciNet  Google Scholar 

  17. Linz, P.: Analytical and Numerical Methods for Volterra Equations. Society for Industrial and Applied Mathematics, Philadelphia (1985)

    Book  Google Scholar 

  18. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  19. Szego, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  20. Beals, R., Wong, R.: Special Functions and Orthogonal Polynomials. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  21. Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  22. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    Article  MathSciNet  Google Scholar 

  23. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)

    Book  Google Scholar 

  24. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Singapore (1993)

    MATH  Google Scholar 

  25. Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 26(6), 825–837 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Gander, W., Gautschi, W.: Adaptive quadrature revisited. BIT Numer. Math. 40(1), 84–101 (2000)

    Article  MathSciNet  Google Scholar 

  27. Zhao, Y.: Collocation methods for second kind of fractional Fredholm integral equations. Master’s thesis, Harbin Institute of Technology, 2017 (in Chinese)

  28. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton and Oxford (2010)

    Book  Google Scholar 

  29. Zhang, Z., Karniadakis, G.: Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer, Berlin (2017)

    Book  Google Scholar 

  30. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  31. Zhao, D., Yu, G., Li, W.: Diffusion on fractal objects modeling and its physics-informed neural network solution. Fract. Complex Geom. Patterns Scal. Nat. Soc. 29(3), 2150071 (2021)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their comments and suggestions which have improved the paper. This work was supported partially by the Open Fund for the Sichuan National Applied Mathematics Center (no. 2022-KFJJ-01-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhi Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Pu, L. & Yu, Y. Oversampling collocation method for the Volterra integral equation with contaminated data. Calcolo 59, 29 (2022). https://doi.org/10.1007/s10092-022-00473-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-022-00473-6

Keywords

Mathematics Subject Classification

Navigation