Skip to main content
Log in

A new splitting method for monotone inclusions of three operators

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this article, we consider monotone inclusions in real Hilbert spaces and suggest a new splitting method. The associated monotone inclusions consist of the sum of one bounded linear monotone operator and one inverse strongly monotone operator and one maximal monotone operator. The new method, at each iteration, first implements one forward–backward step as usual and next implements a descent step, and it can be viewed as a variant of a proximal-descent algorithm in a sense. Its most important feature is that, at each iteration, it needs evaluating the inverse strongly monotone part once only in the forward–backward step and, in contrast, the original proximal-descent algorithm needs evaluating this part twice both in the forward–backward step and in the descent step. Moreover, unlike a recent work, we no longer require the adjoint operation of this bounded linear monotone operator in the descent step. Under standard assumptions, we analyze weak and strong convergence properties of this new method. Rudimentary experiments indicate the superiority of our suggested method over several recently-proposed ones for our test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  2. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MathSciNet  Google Scholar 

  3. Chen, H.G., Rockafellar, R.T.: Convergence rates in forward-backward splitting. SIAM J. Optim. 7, 421–444 (1997)

    Article  MathSciNet  Google Scholar 

  4. Lawrence, J., Spingarn, J.E.: On fixed points of non-expansive piecewise isometric mappings. Proc. Lond. Math. Soc. 55, 605–624 (1987)

    Article  Google Scholar 

  5. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  6. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dong, Y.D., Fischer, A.: A family of operator splitting methods revisited. Nonlinear Anal. 72, 4307–4315 (2010)

    Article  MathSciNet  Google Scholar 

  8. Dong, Y.D.: Douglas–Rachford splitting method for semi-definite programming. J. Appl. Math. Comput. 51, 569–591 (2016)

    Article  MathSciNet  Google Scholar 

  9. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  10. Dong, Y.D.: Splitting Methods for Monotone Inclusions. Ph.D. dissertation, Nanjing University (2003)

  11. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91(1), 123–140 (1996)

    Article  MathSciNet  Google Scholar 

  12. Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 34, 1814–1830 (1996)

    Article  MathSciNet  Google Scholar 

  13. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  Google Scholar 

  14. Dong, Y.D.: A variable metric proximal-descent algorithm for monotone operators. J. Appl. Math. Comput. 60, 563–571 (2012)

    Article  MathSciNet  Google Scholar 

  15. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set Valued Anal. 7, 323–345 (1999)

    Article  MathSciNet  Google Scholar 

  16. Huang, Y.Y., Dong, Y.D.: New properties of forward–backward splitting and a practical proximal-descent algorithm. Appl. Math. Comput. 237, 60–68 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Noor, M.A.: Mixed quasi-variational inequalities. Appl. Math. Comput. 146, 553–578 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Dong, Y.D.: An LS-free splitting method for composite mappings. Appl. Math. Lett. 18(8), 843–848 (2005)

    Article  MathSciNet  Google Scholar 

  19. He, B.S.: Solving a class of linear projection equations. Numer. Math. 68, 71–80 (1994)

    Article  MathSciNet  Google Scholar 

  20. Irschara, A., Zach, C., Klopschitz, M., Bischof, H.: Large-scale, dense city reconstruction from user-contributed photos. Comput. Vis. Image Underst. 116, 2–15 (2012)

    Article  Google Scholar 

  21. Alotaibi, A., Combettes, P.L., Shahzad, N.: Solving coupled composite monotone inclusions by successive Fejér approximations of their Kuhn-Tucker set. SIAM J. Optim. 24(4), 2076–2095 (2014)

    Article  MathSciNet  Google Scholar 

  22. Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. 168(1–2), 645–672 (2018)

    Article  MathSciNet  Google Scholar 

  23. Latafat, P., Patrinos, P.: Asymmetric forward–backward-adjoint splitting for solving monotone inclusions involving three operators. Comput. Optim. Appl. 68(1), 57–93 (2017)

    Article  MathSciNet  Google Scholar 

  24. Briceno-Arias, L.M., Davis, D.: Forward-backward-half forward algorithm with non self-adjoint linear operators for solving monotone inclusions. arXiv:1703.03436 (2017)

  25. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MathSciNet  Google Scholar 

  26. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, River Edge, NJ (2002)

    Book  Google Scholar 

  28. Brezis, H., Crandall, M.G., Pazy, A.: Perturbation of nonlinear maximal monotone sets in Banach space. Comm. Pure Appl. Math. 23, 123–144 (1970)

    Article  MathSciNet  Google Scholar 

  29. Agarwal, R.P., Verma, R.U.: Inexact A-proximal point algorithm and applications to nonlinear variational inclusion problems. J. Optim. Theory Appl. 144, 431–444 (2010)

    Article  MathSciNet  Google Scholar 

  30. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to Xixian Bai at Shandong University for his help in numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunda Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Yu, X. A new splitting method for monotone inclusions of three operators. Calcolo 56, 3 (2019). https://doi.org/10.1007/s10092-018-0299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0299-7

Keywords

Mathematics Subject Classification

Navigation