Skip to main content

Advertisement

Log in

A systematic review of immunotherapy in high-grade glioma: learning from the past to shape future perspectives

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 21 February 2024

This article has been updated

Abstract

High-grade gliomas (HGGs) constitute the most common malignant primary brain tumor with a poor prognosis despite the standard multimodal therapy. In recent years, immunotherapy has changed the prognosis of many cancers, increasing the hope for HGG therapy. We conducted a comprehensive search on PubMed, Scopus, Embase, and Web of Science databases to include relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Fifty-two papers were finally included (44 phase II and eight phase III clinical trials) and further divided into four different subgroups: 14 peptide vaccine trials, 15 dendritic cell vaccination (DCV) trials, six immune checkpoint inhibitor (ICI) trials, and 17 miscellaneous group trials that included both “active” and “passive” immunotherapies. In the last decade, immunotherapy created great hope to increase the survival of patients affected by HGGs; however, it has yielded mostly dismal results in the setting of phase III clinical trials. An in-depth analysis of these clinical results provides clues about common patterns that have led to failures at the clinical level and helps shape the perspective for the next generation of immunotherapies in neuro-oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The authors take full responsibility for the data, the analysis, and the interpretation of the research, and they have full access to all of the data. The dataset analyzed during the current study is available from the corresponding author on reasonable request.

Change history

References

  1. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wen PY, Weller M, Lee EQ et al (2020) Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 22:1073–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ostrom QT, Price M, Neff C et al (2023) CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro Oncol 25:iv1–iv99

    Article  PubMed  Google Scholar 

  4. Weller M, van den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18:170–186

    Article  PubMed  Google Scholar 

  5. Ostrom QT, Shoaf ML, Cioffi G et al (2023) National-level overall survival patterns for molecularly-defined diffuse glioma types in the United States. Neuro Oncol 25:799–807

    Article  CAS  PubMed  Google Scholar 

  6. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G (2014) High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii93-101

    Article  PubMed  Google Scholar 

  7. Lim M, Xia Y, Bettegowda C, Weller M (2018) Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 15:422–442

    Article  CAS  PubMed  Google Scholar 

  8. Pensato U, Guarino M, Muccioli L (2022) The role of neurologists in the era of cancer immunotherapy: focus on CAR T-cell therapy and immune checkpoint inhibitors. Front Neurol 13:936141

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brudno JN, Kochenderfer JN (2019) Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev 34:45–55

    Article  CAS  PubMed  Google Scholar 

  10. Knight A, Karapetyan L, Kirkwood JM (2023) Immunotherapy in melanoma: recent advances and future directions. Cancers (Basel) 15:1106

    Article  CAS  PubMed  Google Scholar 

  11. Mamdani H, Matosevic S, Khalid AB, Durm G, Jalal SI (2022) Immunotherapy in lung cancer: current landscape and future directions. Front Immunol 13:823618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Debien V, De Caluwé A, Wang X et al (2023) Immunotherapy in breast cancer: an overview of current strategies and perspectives. NPJ Breast Cancer 9:7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ahmad A, Khan P, Rehman AU, Batra SK, Nasser MW (2023) Immunotherapy: an emerging modality to checkmate brain metastasis. Mol Cancer 22:111

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bausart M, Préat V, Malfanti A (2022) Immunotherapy for glioblastoma: the promise of combination strategies. J Exp Clin Cancer Res 41:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rong L, Li N, Zhang Z (2022) Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res 41:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ahluwalia MS, Reardon DA, Abad AP et al (2023) Phase IIa study of SurVaxM plus adjuvant temozolomide for newly diagnosed glioblastoma. J Clin Oncol 41:1453–1465

    Article  CAS  PubMed  Google Scholar 

  17. Bloch O, Lim M, Sughrue ME et al (2017) Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: impact of peripheral PD-L1 expression on response to therapy. Clin Cancer Res 23:3575–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bloch O, Crane CA, Fuks Y et al (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol 16:274–279

    Article  CAS  PubMed  Google Scholar 

  19. Bota DA, Chung J, Dandekar M et al (2018) Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: interim results and correlations with CD4(+) T-lymphocyte counts. CNS Oncol 7:Cns22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishikawa E, Muragaki Y, Yamamoto T et al (2014) Phase I/IIa trial of fractionated radiotherapy, temozolomide, and autologous formalin-fixed tumor vaccine for newly diagnosed glioblastoma. J Neurosurg 121:543–553

    Article  CAS  PubMed  Google Scholar 

  21. Izumoto S, Tsuboi A, Oka Y et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108:963–971

    Article  CAS  PubMed  Google Scholar 

  22. Migliorini D, Dutoit V, Allard M et al (2019) Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro Oncol 21:923–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Narita Y, Okita Y, Arakawa Y (2022) Evaluation of the efficacy and safety of TAS0313 in adults with recurrent glioblastoma. Cancer Immunol Immunother 71:2703–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reardon DA, Desjardins A, Vredenburgh JJ et al (2020) Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): results of a double-blind randomized phase II trial. Clin Cancer Res 26:1586–1594

    Article  CAS  PubMed  Google Scholar 

  25. Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sampson JH, Aldape KD, Archer GE et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 13:324–333

    Article  CAS  PubMed  Google Scholar 

  27. Schuster J, Lai RK, Recht LD et al (2015) A phase II, multicenter trial of Rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol 17:854–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Narita Y, Arakawa Y, Yamasaki F et al (2019) A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro Oncol 21:348–359

    Article  PubMed  Google Scholar 

  29. Weller M, Butowski N, Tran DD et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18:1373–1385

    Article  CAS  PubMed  Google Scholar 

  30. Akasaki Y, Kikuchi T, Homma S et al (2016) Phase I/II trial of combination of temozolomide chemotherapy and immunotherapy with fusions of dendritic and glioma cells in patients with glioblastoma. Cancer Immunol Immunother 65:1499–1509

    Article  CAS  PubMed  Google Scholar 

  31. Ardon H, Van Gool SW, Verschuere T et al (2012) Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother 61:2033–2044

    Article  CAS  PubMed  Google Scholar 

  32. Bota DA, Taylor TH, Piccioni DE et al (2022) Phase 2 study of AV-GBM-1 (a tumor-initiating cell targeted dendritic cell vaccine) in newly diagnosed Glioblastoma patients: safety and efficacy assessment. J Exp Clin Cancer Res 41:344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buchroithner J, Erhart F, Pichler J et al (2018) Audencel immunotherapy based on dendritic cells has no effect on overall and progression-free survival in newly diagnosed glioblastoma: a phase II randomized trial. Cancers (Basel) 10:372

    Article  CAS  PubMed  Google Scholar 

  34. Chang CN, Huang YC, Yang DM et al (2011) A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci 18:1048–1054

    Article  CAS  PubMed  Google Scholar 

  35. Cho DY, Yang WK, Lee HC et al (2012) Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg 77:736–744

    Article  PubMed  Google Scholar 

  36. Elens I, De Vleeschouwer S, Pauwels F, Van Gool SW (2012) Resection and immunotherapy for recurrent grade III glioma. ISNR Immunol 2012:1

    Google Scholar 

  37. Inoges S, Tejada S, de Cerio AL et al (2017) A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. J Transl Med 15:104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mitsuya K, Akiyama Y, Iizuka A et al (2020) Alpha-type-1 polarized dendritic cell-based vaccination in newly diagnosed high-grade glioma: a phase II clinical trial. Anticancer Res 40:6473–6484

    Article  CAS  PubMed  Google Scholar 

  39. Vik-Mo EO, Nyakas M, Mikkelsen BV et al (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 62:1499–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wen PY, Reardon DA, Armstrong TS et al (2019) A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res 25:5799–5807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamanaka R, Abe T, Yajima N et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamanaka R, Homma J, Yajima N et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167

    Article  CAS  PubMed  Google Scholar 

  43. Yao Y, Luo F, Tang C et al (2018) Molecular subgroups and B7–H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: an exploratory randomized phase II clinical trial. Cancer Immunol Immunother 67:1777–1788

    Article  CAS  PubMed  Google Scholar 

  44. Liau LM, Ashkan K, Brem S et al (2023) Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol 9:112–121

    Article  PubMed  Google Scholar 

  45. Aoki T, Kagawa N, Sugiyama K et al (2021) Efficacy and safety of nivolumab in Japanese patients with first recurrence of glioblastoma: an open-label, non-comparative study. Int J Clin Oncol 26:2205–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jacques FH, Nicholas G, Lorimer IAJ et al (2021) Avelumab in newly diagnosed glioblastoma. Neurooncol Adv 3:vdab118

    PubMed  PubMed Central  Google Scholar 

  47. Nayak L, Molinaro AM, Peters K et al (2021) Randomized phase II and biomarker study of pembrolizumab plus bevacizumab versus pembrolizumab alone for patients with recurrent glioblastoma. Clin Cancer Res 27:1048–1057

    Article  CAS  PubMed  Google Scholar 

  48. Lim M, Weller M, Idbaih A et al (2022) Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol 24:1935–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reardon DA, Brandes AA, Omuro A et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 6:1003–1010

    Article  PubMed  Google Scholar 

  50. Butowski N, Colman H, De Groot JF et al (2016) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol 18:557–564

    Article  PubMed  Google Scholar 

  51. Carpentier A, Metellus P, Ursu R et al (2010) Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol 12:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Freeman AI, Zakay-Rones Z, Gomori JM et al (2006) Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther 13:221–228

    Article  CAS  PubMed  Google Scholar 

  53. Geletneky K, Hajda J, Angelova AL et al (2017) Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol Ther 25:2620–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li L, Quang TS, Gracely EJ et al (2010) A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg 113:192–198

    Article  PubMed  Google Scholar 

  55. Lim J, Park Y, Ahn JW et al (2021) Autologous adoptive immune-cell therapy elicited a durable response with enhanced immune reaction signatures in patients with recurrent glioblastoma: an open label, phase I/IIa trial. PLoS One 16:e0247293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mansfield AS, Hong DS, Hann CL et al (2021) A phase I/II study of rovalpituzumab tesirine in delta-like 3-expressing advanced solid tumors. NPJ Precis Oncol 5:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Odia Y, Cavalcante L, Safran H et al (2022) Malignant glioma subset from actuate 1801: phase I/II study of 9-ING-41, GSK-3β inhibitor, monotherapy or combined with chemotherapy for refractory malignancies. Neurooncol Adv 4:vdac012

    PubMed  PubMed Central  Google Scholar 

  58. Reardon DA, Akabani G, Coleman RE et al (2006) Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 24:115–122

    Article  CAS  PubMed  Google Scholar 

  59. Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M (2022) A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat Commun 13:4119

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Todo T, Ito H, Ino Y et al (2022) Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med 28:1630–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ursu R, Carpentier A, Metellus P et al (2017) Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma-a phase II multicentric, randomised study. Eur J Cancer 73:30–37

    Article  CAS  PubMed  Google Scholar 

  62. Wheeler LA, Manzanera AG, Bell SD et al (2016) Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol 18:1137–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cloughesy TF, Petrecca K, Walbert T et al (2020) Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol 6:1939–1946

    Article  PubMed  Google Scholar 

  64. Kong DS, Nam DH, Kang SH et al (2017) Phase III randomized trial of autologous cytokine-induced killer cell immunotherapy for newly diagnosed glioblastoma in Korea. Oncotarget 8:7003–7013

    Article  PubMed  Google Scholar 

  65. Westphal M, Yla-Herttuala S, Martin J et al (2013) Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol 14:823–833

    Article  CAS  PubMed  Google Scholar 

  66. Lin MJ, Svensson-Arvelund J, Lubitz GS et al (2022) Cancer vaccines: the next immunotherapy frontier. Nat Cancer 3:911–926

    Article  CAS  PubMed  Google Scholar 

  67. Heimberger AB, Hlatky R, Suki D et al (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11:1462–1466

    Article  CAS  PubMed  Google Scholar 

  68. Chakravarti A, Noll E, Black PM et al (2002) Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 20:1063–1068

    Article  CAS  PubMed  Google Scholar 

  69. Srivastava PK, Callahan MK, Mauri MM (2009) Treating human cancers with heat shock protein-peptide complexes: the road ahead. Expert Opin Biol Ther 9:179–186

    Article  CAS  PubMed  Google Scholar 

  70. Sugiyama H (2010) WT1 (Wilms’ tumor gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol 40:377–387

    Article  PubMed  Google Scholar 

  71. Sakai K, Shimodaira S, Maejima S et al (2015) Dendritic cell-based immunotherapy targeting Wilms’ tumor 1 in patients with recurrent malignant glioma. J Neurosurg 123:989–997

    Article  CAS  PubMed  Google Scholar 

  72. Okada H, Butterfield LH, Hamilton RL et al (2015) Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res 21:286–294

    Article  CAS  PubMed  Google Scholar 

  73. Pollack IF, Jakacki RI, Butterfield LH et al (2016) Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro Oncol 18:1157–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dutoit V, Herold-Mende C, Hilf N et al (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135:1042–1054

    Article  PubMed  Google Scholar 

  75. Santos PM, Butterfield LH (2018) Dendritic cell-based cancer vaccines. J Immunol 200:443–449

    Article  CAS  PubMed  Google Scholar 

  76. Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M (2023) Dendritic cell vaccine trials in gliomas: untangling the lines. Neuro Oncol 25:1752–1762

    Article  CAS  PubMed  Google Scholar 

  77. Heimberger AB, Crotty LE, Archer GE et al (2000) Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 103:16–25

    Article  CAS  PubMed  Google Scholar 

  78. Fecci PE, Ochiai H, Mitchell DA et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13:2158–2167

    Article  CAS  PubMed  Google Scholar 

  79. Reardon DA, Mitchell DA (2017) The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol 39:225–239

    Article  CAS  PubMed  Google Scholar 

  80. Liau LM, Ashkan K, Tran DD et al (2018) First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 16:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. He X, Xu C (2020) Immune checkpoint signaling and cancer immunotherapy. Cell Res 30:660–669

    Article  PubMed  PubMed Central  Google Scholar 

  82. Marin-Acevedo JA, Kimbrough EO, Lou Y (2021) Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol 14:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Armand P (2015) Immune checkpoint blockade in hematologic malignancies. Blood 125:3393–3400

    Article  CAS  PubMed  Google Scholar 

  84. Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D (2023) Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 8:320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nayak L, Standifer N, Dietrich J et al (2022) Circulating immune cell and outcome analysis from the phase II study of PD-L1 blockade with durvalumab for newly diagnosed and recurrent glioblastoma. Clin Cancer Res 28:2567–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu S, Calero-Pérez P, Arús C, Candiota AP (2020) Anti-PD-1 immunotherapy in preclinical GL261 glioblastoma: influence of therapeutic parameters and non-invasive response biomarker assessment with MRSI-based approaches. Int J Mol Sci 21:8775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu M, Yao Y, Hua W et al (2014) Mouse glioma immunotherapy mediated by A2B5+ GL261 cell lysate-pulsed dendritic cells. J Neurooncol 116:497–504

    Article  CAS  PubMed  Google Scholar 

  88. Roth P, Valavanis A, Weller M (2017) Long-term control and partial remission after initial pseudoprogression of glioblastoma by anti-PD-1 treatment with nivolumab. Neuro Oncol 19:454–456

    PubMed  Google Scholar 

  89. Anghileri E, Di Ianni N, Paterra R et al (2021) High tumor mutational burden and T-cell activation are associated with long-term response to anti-PD1 therapy in Lynch syndrome recurrent glioblastoma patient. Cancer Immunol Immunother 70:831–842

    Article  CAS  PubMed  Google Scholar 

  90. Omuro A, Brandes AA, Carpentier AF et al (2023) Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial. Neuro Oncol 25:123–134

    Article  CAS  PubMed  Google Scholar 

  91. Rahman M, Sawyer WG, Lindhorst S et al (2020) Adult immuno-oncology: using past failures to inform the future. Neuro Oncol 22:1249–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18:197–218

    Article  CAS  PubMed  Google Scholar 

  93. Bonaventura P, Shekarian T, Alcazer V et al (2019) Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol 10:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. O’Donnell JS, Teng MWL, Smyth MJ (2019) Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 16:151–167

    Article  PubMed  Google Scholar 

  95. Garg AD, Vandenberk L, Van Woensel M et al (2017) Preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology 6:e1295903

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yeung JT, Hamilton RL, Ohnishi K et al (2013) LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma. Clin Cancer Res 19:1816–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sharma P, Aaroe A, Liang J, Puduvalli VK (2023) Tumor microenvironment in glioblastoma: current and emerging concepts. Neurooncol Adv 5:vdad009

    PubMed  PubMed Central  Google Scholar 

  98. Touat M, Li YY, Boynton AN et al (2020) Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580:517–523

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iorgulescu JB, Gokhale PC, Speranza MC et al (2021) Concurrent dexamethasone limits the clinical benefit of immune checkpoint blockade in glioblastoma. Clin Cancer Res 27:276–287

    Article  CAS  PubMed  Google Scholar 

  100. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhang X, Zhu L, Zhang H, Chen S, Xiao Y (2022) CAR-T cell therapy in hematological malignancies: current opportunities and challenges. Front Immunol 13:927153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van den Berg JH, Heemskerk B, van Rooij N et al (2020) Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up. J Immunother Cancer 8:e000848

    Article  PubMed  PubMed Central  Google Scholar 

  103. Weathers SP, Penas-Prado M, Pei BL et al (2020) Glioblastoma-mediated immune dysfunction limits CMV-specific T cells and therapeutic responses: results from a phase I/II trial. Clin Cancer Res 26:3565–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takeshita F, Leifer CA, Gursel I et al (2001) Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 167:3555–3558

    Article  CAS  PubMed  Google Scholar 

  105. Meng Y, Kujas M, Marie Y et al (2008) Expression of TLR9 within human glioblastoma. J Neurooncol 88:19–25

    Article  PubMed  Google Scholar 

  106. Krieg AM (2004) Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides. Curr Oncol Rep 6:88–95

    Article  PubMed  Google Scholar 

  107. Carpentier AF, Xie J, Mokhtari K, Delattre JY (2000) Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res 6:2469–2473

    CAS  PubMed  Google Scholar 

  108. Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Coniglio SJ, Eugenin E, Dobrenis K et al (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ravi VM, Neidert N, Will P et al (2022) T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat Commun 13:925

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Quail DF, Bowman RL, Akkari L et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352:aad3018

    Article  PubMed  PubMed Central  Google Scholar 

  113. Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS (2018) Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer 6:140

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV (2023) Recent developments in glioblastoma therapy: oncolytic viruses and emerging future strategies. Viruses 15:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Frosina G (2023) Recapitulating the key advances in the diagnosis and prognosis of high-grade gliomas: second half of 2021 update. Int J Mol Sci 24:6375

    Article  PubMed  PubMed Central  Google Scholar 

  116. Krex D, Klink B, Hartmann C et al (2007) Long-term survival with glioblastoma multiforme. Brain 130:2596–2606

    Article  PubMed  Google Scholar 

  117. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  118. Stupp R, Taillibert S, Kanner A et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318:2306–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. (2022) The expanding palette of immunotherapy research. Nat Cancer 3:651. https://doi.org/10.1038/s43018-022-00410-0

  120. Yu MW, Quail DF (2021) Immunotherapy for glioblastoma: current progress and challenges. Front Immunol 12:676301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pearson JRD, Cuzzubbo S, McArthur S et al (2020) Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Front Immunol 11:582106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wainwright DA, Chang AL, Dey M et al (2014) Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 20:5290–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zeng J, See AP, Phallen J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Park J, Kim CG, Shim JK et al (2019) Effect of combined anti-PD-1 and temozolomide therapy in glioblastoma. Oncoimmunology 8:e1525243

    Article  PubMed  Google Scholar 

  125. Reardon DA, Gokhale PC, Klein SR et al (2016) Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 4:124–135

    Article  CAS  PubMed  Google Scholar 

  126. Mishima K, Johns TG, Luwor RB et al (2001) Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 61:5349–5354

    CAS  PubMed  Google Scholar 

  127. Jungbluth AA, Stockert E, Huang HJ et al (2003) A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor. Proc Natl Acad Sci U S A 100:639–44

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Luwor RB, Johns TG, Murone C et al (2001) Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res 61:5355–5361

    CAS  PubMed  Google Scholar 

  129. Facoetti A, Nano R, Zelini P et al (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11:8304–8311

    Article  CAS  PubMed  Google Scholar 

  130. Johanns TM, Ward JP, Miller CA et al (2016) Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 4:1007–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Frederico SC, Zhang X, Hu B, Kohanbash G (2022) Pre-clinical models for evaluating glioma targeted immunotherapies. Front Immunol 13:1092399

    Article  CAS  PubMed  Google Scholar 

  132. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  133. Lee J, Kotliarova S, Kotliarov Y et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  CAS  PubMed  Google Scholar 

  134. Yang W, Li Y, Gao R, Xiu Z, Sun T (2020) MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/β-catenin signaling pathway. Oncogene 39:1098–1111

    Article  CAS  PubMed  Google Scholar 

  135. Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, Uprety N, Wang F, Huang Y, Gabrusiewicz K et al (2021) Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Investig 131:e142116. https://doi.org/10.1172/JCI142116

  136. DeCordova S, Shastri A, Tsolaki AG et al (2020) Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Front Immunol 11:1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Suvà ML, Tirosh I (2020) The glioma stem cell model in the era of single-cell genomics. Cancer Cell 37:630–636

    Article  PubMed  Google Scholar 

  138. Jacob F, Salinas RD, Zhang DY et al (2020) A patient-derived glioblastoma organoid model and Biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180(188–204):e22

    Google Scholar 

  139. Weller M, Butowski N, Tran DD et al (2017) Go, no-go decision making for phase 3 clinical trials: ACT IV revisited - authors’ reply. Lancet Oncol 18:e709–e710

    Article  PubMed  Google Scholar 

  140. Sferruzza G, Finocchiaro G (2023) Glioblastoma immunotherapy: time for hope? Neurol Sci 45(1):357–358. https://doi.org/10.1007/s10072-023-07066-3

    Article  PubMed  Google Scholar 

  141. Pessina S, Cantini G, Kapetis D et al (2016) The multidrug-resistance transporter Abcc3 protects NK cells from chemotherapy in a murine model of malignant glioma. Oncoimmunology 5:e1108513

    Article  PubMed  Google Scholar 

  142. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  143. Tawbi HA, Schadendorf D, Lipson EJ et al (2022) Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 386:24–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhu S, Zhang T, Zheng L et al (2021) Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol 14:156

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the Sezione Italiana Giovani Neurologi (SIgN) for providing the opportunity to establish the working group that brought this project to fruition.

Author information

Authors and Affiliations

Authors

Contributions

GS conceived and designed the study. All authors acquired and analyzed data, and drafted and critically revised the manuscript.

Corresponding author

Correspondence to Giacomo Sferruzza.

Ethics declarations

Ethical approval

None.

Consent to participants

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original article contains a spelling error in author name. The author “Eleonara Rollo” should read as “Eleonora Rollo”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sferruzza, G., Consoli, S., Dono, F. et al. A systematic review of immunotherapy in high-grade glioma: learning from the past to shape future perspectives. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07350-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07350-w

Keywords

Navigation