Skip to main content

Advertisement

Log in

Neuroglial components of brain lesions may provide new therapeutic strategies for multiple sclerosis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic autoimmune and demyelinating disease of the central nervous system (CNS) which leads to focal demyelinated lesions in the brain and spinal cord. Failure of remyelination contributes to chronic disability in young adults. Characterization of events occurring during the demyelination and remyelination processes and those of which subsequently limit remyelination or contribute to demyelination can provide the possibility of new therapies development for MS. Most of the currently available therapies and investigations modulate immune responses and mediators. Since most therapeutic strategies have unsatisfied outcomes, developing new therapies that enhance brain lesion repair is a priority. A close look at cellular and chemical components of MS lesions will pave the way to a better understanding of lesions pathology and will provide possible opportunities for repair strategies and targeted pharmacotherapy. This review summarizes the lesion components and features, particularly the detrimental elements, and discusses the possibility of suggesting new potential targets as therapies for demyelinating diseases like MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA (2018) Multiple sclerosis. Nat Rev Dis Primers 4:43

    Article  PubMed  Google Scholar 

  2. Giovannoni G, Popescu V, Wuerfel J, Hellwig K, Iacobaeus E, Jensen MB, García-Domínguez JM, Sousa L, De Rossi N, Hupperts R (2022) Smouldering multiple sclerosis: the ‘real MS’. Ther Adv Neurol Disord 15:17562864211066751

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, Mandrekar J, Bramow S, Metz I, Brück W (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78:710–721

    Article  PubMed  PubMed Central  Google Scholar 

  4. Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, Meani A, Filippi M, Jacobson S, Cortese IC (2016) Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Investig 126:2597–2609

    Article  PubMed  PubMed Central  Google Scholar 

  5. Plemel JR, Liu W-Q, Yong VW (2017) Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 16:617

    Article  CAS  PubMed  Google Scholar 

  6. Rayatpour A, Javan M (2021) Targeting the brain lesions using peptides: a review focused on the possibility of targeted drug delivery to multiple sclerosis lesions. Pharmacol Res 167:105441

    Article  CAS  PubMed  Google Scholar 

  7. Rahmanzadeh R, Galbusera R, Lu PJ, Bahn E, Weigel M, Barakovic M, Franz J, Nguyen TD, Spincemaille P, Schiavi S (2022) A new advanced MRI biomarker for remyelinated lesions in multiple sclerosis. Ann Neurol 92:486–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Homayouny E, Khayati RM, Nabavi SM, Karami V (2022) Perfusion MRI in automatic classification of multiple sclerosis lesion subtypes. IET Signal Process 16(4):377–390

    Article  Google Scholar 

  9. Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H (2017) An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 133:13–24

    Article  CAS  PubMed  Google Scholar 

  10. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354:942–955

    Article  CAS  PubMed  Google Scholar 

  11. Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  12. Stork L, Ellenberger D, Ruprecht K, Reindl M, Beißbarth T, Friede T, Kümpfel T, Gerdes LA, Gloth M, Liman T (2020) Antibody signatures in patients with histopathologically defined multiple sclerosis patterns. Acta Neuropathol 139:547–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I (2018) Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol 135:511–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Allen NJ, Barres BA (2009) Neuroscience: Glia - more than just brain glue. Nature 457:675–677

    Article  CAS  PubMed  Google Scholar 

  15. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wheeler MA, Clark IC, Tjon EC, Li Z, Zandee SE, Couturier CP, Watson BR, Scalisi G, Alkwai S, Rothhammer V (2020) MAFG-driven astrocytes promote CNS inflammation. Nature 578:593–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53:688–695

    Article  PubMed  Google Scholar 

  19. Gimsa U, Mitchison NA, Brunner-Weinzierl MC (2013) Immune privilege as an intrinsic CNS property: astrocytes protect the CNS against T-cell-mediated neuroinflammation. Mediators Inflamm 2013:320519

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liddelow S, Hoyer D (2016) Astrocytes: adhesion molecules and immunomodulation. Curr Drug Targets 17:1871–1881

    Article  CAS  PubMed  Google Scholar 

  21. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weiner HL (2004) Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease. Arch Neurol 61:1613–1615

    Article  PubMed  Google Scholar 

  23. Absinta M, Maric D, Gharagozloo M, Garton T, Smith MD, Jin J, Fitzgerald KC, Song A, Liu P, Lin J-P (2021) A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597:709–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silva Oliveira Junior M, Schira-Heinen J, Reiche L, Han S, de Amorim VCM, Lewen I, Gruchot J, Göttle P, Akkermann R, Azim K, Küry P (2022) Myelin repair is fostered by the corticosteroid medrysone specifically acting on astroglial subpopulations. EBioMedicine 2022(83):104204. https://doi.org/10.1016/j.ebiom.2022.104204

  25. Malik O, Compston DA, Scolding NJ (1998) Interferon-beta inhibits mitogen induced astrocyte proliferation in vitro. J Neuroimmunol 86:155–162

    Article  CAS  PubMed  Google Scholar 

  26. Zeinstra E, Wilczak N, Chesik D, Glazenburg L, Kroese FG, De Keyser J (2006) Simvastatin inhibits interferon-gamma-induced MHC class II up-regulation in cultured astrocytes. J Neuroinflammation 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ghasemi-Kasman M, Zare L, Baharvand H, Javan M (2017) In vivo conversion of astrocytes to myelinating cells by miR-302/367 and valproate to enhance myelin repair. J Tissue Eng Regen Med 12(1):e462–e472

    Article  PubMed  Google Scholar 

  28. Mokhtarzadeh Khanghahi A, Satarian L, Deng W, Baharvand H, Javan M (2018) In vivo conversion of astrocytes into oligodendrocyte lineage cells with transcription factor Sox10; Promise for myelin repair in multiple sclerosis. PloS one 13:e0203785

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R, Johnson JE, Zhang CL (2015) SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Rep 4:780–794

    Article  CAS  Google Scholar 

  30. Zare L, Baharvand H, Javan M (2018) In vivo conversion of astrocytes to oligodendrocyte lineage cells using chemicals: targeting gliosis for myelin repair. Regen Med 13:803–819

    Article  CAS  PubMed  Google Scholar 

  31. Carson MJ (2002) Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 40:218–231

    Article  PubMed  PubMed Central  Google Scholar 

  32. Strachan-Whaley M, Rivest S, Yong VW (2014) Interactions between microglia and T cells in multiple sclerosis pathobiology. J Interferon Cytokine Res 34:615–622

    Article  CAS  PubMed  Google Scholar 

  33. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  CAS  PubMed  Google Scholar 

  34. Swanson ME, Murray HC, Ryan B, Faull RL, Dragunow M, Curtis MA (2020) Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context. Sci Rep 10:1–18

    Article  Google Scholar 

  35. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(380-395):e386

    Google Scholar 

  36. Sankowski R, Böttcher C, Masuda T, Geirsdottir L, Sindram E, Seredenina T, Muhs A, Scheiwe C, Shah MJ, Heiland DH (2019) Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nature Neurosci 22:2098–2110

    Article  CAS  PubMed  Google Scholar 

  37. Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M, De Jager PL, Ransohoff RM, Regev A, Tsai L-H (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21:366–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(1276-1290):e1217

    Google Scholar 

  39. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50(253-271):e256

    Google Scholar 

  40. Plemel JR, Stratton JA, Michaels NJ, Rawji KS, Zhang E, Sinha S, Baaklini CS, Dong Y, Ho M, Thorburn K (2020) Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci Adv 6:eaay6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Scheiwe C, Nessler S, Kunz P, van Loo G, Coenen VA (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392

    Article  CAS  PubMed  Google Scholar 

  42. Beckmann N, Giorgetti E, Neuhaus A, Zurbruegg S, Accart N, Smith P, Perdoux J, Perrot L, Nash M, Desrayaud S (2018) Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol Commun 6:1–17

    Article  Google Scholar 

  43. Nissen JC, Thompson KK, West BL, Tsirka SE (2018) Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp Neurol 307:24–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hövelmeyer N, Waisman A, Rülicke T, Prinz M, Priller J (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    Article  CAS  PubMed  Google Scholar 

  45. Ní Gabhann J, Hams E, Smith S, Wynne C, Byrne JC, Brennan K, Spence S, Kissenpfennig A, Johnston JA, Fallon PG (2014) Btk regulates macrophage polarization in response to lipopolysaccharide. PloS one 9:e85834

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bhargava P, Kim S, Reyes AA, Grenningloh R, Boschert U, Absinta M, Pardo C, Van Zijl P, Zhang J, Calabresi PA (2021) Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain 144:1396–1408

    Article  PubMed  PubMed Central  Google Scholar 

  47. Groves A, Kihara Y, Chun J (2013) Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci 328:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi JW, Gardell SE, Herr DR, Rivera R, Lee C-W, Noguchi K, Teo ST, Yung YC, Lu M, Kennedy G (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci 108:751–756

    Article  CAS  PubMed  Google Scholar 

  49. Jørgensen LØ, Hyrlov K, Elkjaer M, Weber AB, Pedersen A, Svenningsen ÅF, Illes Z (2020) Cladribine modifies functional properties of microglia. Clin Exp Immunol 201:328–340

    Article  PubMed  PubMed Central  Google Scholar 

  50. Aybar F, Perez MJ, Marcora MS, Samman ME, Marrodan M, Pasquini JM, Correale J (2022) 2-Chlorodeoxyadenosine (Cladribine) preferentially inhibits the biological activity of microglial cells. Int Immunopharmacol 105:108571

    Article  CAS  PubMed  Google Scholar 

  51. Musella A, Mandolesi G, Gentile A, Rossi S, Studer V, Motta C, Sepman H, Fresegna D, Haji N, Paolillo A (2013) Cladribine interferes with IL-1β synaptic effects in experimental multiple sclerosis. J Neuroimmunol 264:8–13

    Article  CAS  PubMed  Google Scholar 

  52. Edling A, Woodworth L, Agrawal R, Mahan A, Garron T, Hagan N, Siders B (2017) Teriflunomide impacts primary microglia and astrocyte functions in vitro (P2. 348). In: American Academy of Neurology Annual meeting

  53. Wostradowski T, Prajeeth CK, Gudi V, Kronenberg J, Witte S, Brieskorn M, Stangel M (2016) In vitro evaluation of physiologically relevant concentrations of teriflunomide on activation and proliferation of primary rodent microglia. J Neuroinflammation 13:1–12

    Article  Google Scholar 

  54. Linker RA, Lee D-H, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X, Buko A, Chollate S (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:678–692

    Article  PubMed  Google Scholar 

  55. Pagani F, Testi C, Grimaldi A, Corsi G, Cortese B, Basilico B, Baiocco P, De Panfilis S, Ragozzino D, Di Angelantonio S (2020) Dimethyl fumarate reduces microglia functional response to tissue damage and favors brain iron homeostasis. Neuroscience 439:241–254

    Article  CAS  PubMed  Google Scholar 

  56. Kipp M, Victor M, Martino G, Franklin RJ (2012) Endogeneous remyelination: findings in human studies. CNS Neurol Disord Drug Targets 11:598–609

    Article  CAS  PubMed  Google Scholar 

  57. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    Article  PubMed  Google Scholar 

  58. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  CAS  PubMed  Google Scholar 

  59. Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S, Agirre E, Floriddia EM, Vanichkina DP, Williams A, Guerreiro-Cacais AO (2018) Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24:1837–1844

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fernández-Castañeda A, Chappell MS, Rosen DA, Seki SM, Beiter RM, Johanson DM, Liskey D, Farber E, Onengut-Gumuscu S, Overall CC (2020) The active contribution of OPCs to neuroinflammation is mediated by LRP1. Acta Neuropathol 139:365–382

    Article  PubMed  Google Scholar 

  61. Kirby L, Jin J, Cardona JG, Smith MD, Martin KA, Wang J, Strasburger H, Herbst L, Alexis M, Karnell J (2019) Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat Commun 10:1–20

    Article  CAS  Google Scholar 

  62. Jäkel S, Agirre E, Falcão AM, Van Bruggen D, Lee KW, Knuesel I, Malhotra D, Williams A, Castelo-Branco G (2019) Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566:543–547

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yeung MS, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, Brundin L, Frisén J (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566:538–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heß K, Starost L, Kieran NW, Thomas C, Vincenten MC, Antel J, Martino G, Huitinga I, Healy L, Kuhlmann T (2020) Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol 140:359–375

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, Khan N, Kumar A, Thom SR, Faden AI (2017) Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 14:47

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rajendran L, Bali J, Barr MM, Krämer-Albers E-M, Picou F, Raposo G, van der Vos KE, van Niel G, Wang J, Breakefield XO (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34:15482–15489

    Article  PubMed  PubMed Central  Google Scholar 

  67. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fraser KB, Rawlins AB, Clark RG, Alcalay RN, Standaert DG, Liu N, West AB (2016) Ser (P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson's disease. Mov Disord 31:1543–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gomes C, Keller S, Altevogt P, Costa J (2007) Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett 428:43–46

    Article  CAS  PubMed  Google Scholar 

  70. Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, Schwartz JB, Miller BL (2016) Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. The FASEB J 30:3853–3859

    Article  CAS  PubMed  Google Scholar 

  71. Marcos-Ramiro B, Nacarino PO, Serrano-Pertierra E, Blanco-Gelaz MÁ, Weksler BB, Romero IA, Couraud PO, Tuñón A, López-Larrea C, Millán J (2014) Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC Neurosci 15:110

    Article  PubMed  PubMed Central  Google Scholar 

  72. Galazka G, Mycko MP, Selmaj I, Raine CS, Selmaj KW (2018) Multiple sclerosis: serum-derived exosomes express myelin proteins. Mult Scler 24(4):449–458. https://doi.org/10.1177/1352458517696597

    Article  CAS  PubMed  Google Scholar 

  73. Pieragostino D, Cicalini I, Lanuti P, Ercolino E, di Ioia M, Zucchelli M, Zappacosta R, Miscia S, Marchisio M, Sacchetta P (2018) Enhanced release of acid sphingomyelinase-enriched exosomes generates a lipidomics signature in CSF of multiple sclerosis patients. Sci Rep 8:1–12

    Article  Google Scholar 

  74. Casella G, Rasouli J, Boehm A, Zhang W, Xiao D, Ishikawa LLW, Thome R, Li X, Hwang D, Porazzi P (2020) Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci Transl Med 12:eaba0599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carandini T, Colombo F, Finardi A, Casella G, Garzetti L, Verderio C, Furlan R (2015) Microvesicles: what is the role in multiple sclerosis? Front Neurol 6:111

    Article  PubMed  PubMed Central  Google Scholar 

  76. Verderio C, Muzio L, Turola E, Bergami A, Novellino L, Ruffini F, Riganti L, Corradini I, Francolini M, Garzetti L, Maiorino C, Servida F, Vercelli A, Rocca M, Dalla Libera D, Martinelli V, Comi G, Martino G, Matteoli M, Furlan R (2012) Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol 72:610–624

    Article  CAS  PubMed  Google Scholar 

  77. Lombardi M, Parolisi R, Scaroni F, Bonfanti E, Gualerzi A, Gabrielli M, de Rosbo NK, Uccelli A, Giussani P, Viani P (2019) Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol 138:987–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dickens AM, Tovar-y-Romo LB, Yoo S-W, Trout AL, Bae M, Kanmogne M, Megra B, Williams DW, Witwer KW, Gacias M (2017) Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signal 10:eaai7696

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang K, Ye L, Lu H, Chen H, Zhang Y, Huang Y, Zheng JC (2017) TNF-α promotes extracellular vesicle release in mouse astrocytes through glutaminase. J Neuroinflammation 14:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo BB, Bellingham SA, Hill AF (2015) The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 290:3455–3467

    Article  CAS  PubMed  Google Scholar 

  81. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. The EMBO J 28:1043–1054

    Article  CAS  PubMed  Google Scholar 

  82. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  83. Saenz-Cuesta M, Osorio-Querejeta I, Otaegui D (2014) Extracellular Vesicles in Multiple Sclerosis: What are They Telling Us? Front Cell Neurosci 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dawson G, Qin J (2011) Gilenya (FTY720) inhibits acid sphingomyelinase by a mechanism similar to tricyclic antidepressants. Biochem Biophys Res Commun 404:321–323

    Article  CAS  PubMed  Google Scholar 

  85. Liu C, Su C (2019) Design strategies and application progress of therapeutic exosomes. Theranostics 9:1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG (2012) Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PloS one 7:e37589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp B, He Z, Jung V, McCoy JM, Pepinsky RB (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745–751

    Article  CAS  PubMed  Google Scholar 

  88. Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R, Franklin RJ, Rowitch DH (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Williams A, Piaton G, Aigrot MS, Belhadi A, Theaudin M, Petermann F, Thomas JL, Zalc B, Lubetzki C (2007) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130:2554–2565

    Article  PubMed  Google Scholar 

  90. Seyedsadr MS, Weinmann O, Amorim A, Ineichen BV, Egger M, Mirnajafi-Zadeh J, Becher B, Javan M, Schwab ME (2019) Inactivation of sphingosine-1-phosphate receptor 2 (S1PR2) decreases demyelination and enhances remyelination in animal models of multiple sclerosis. Neurobiol Dis 124:189–201

    Article  CAS  PubMed  Google Scholar 

  91. Niknam P, Raoufy MR, Fathollahi Y, Javan M (2019) Modulating proteoglycan receptor PTPσ using intracellular sigma peptide improves remyelination and functional recovery in mice with demyelinated optic chiasm. Mol Cell Neurosci 99:103391

    Article  CAS  PubMed  Google Scholar 

  92. Syed YA, Baer A, Hofer MP, Gonzalez GA, Rundle J, Myrta S, Huang JK, Zhao C, Rossner MJ, Trotter MW, Lubec G, Franklin RJ, Kotter MR (2013) Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Mol Med 5:1918–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mi S, Lee X, Hu Y, Ji B, Shao Z, Yang W, Huang G, Walus L, Rhodes K, Gong BJ, Miller RH, Pepinsky RB (2011) Death receptor 6 negatively regulates oligodendrocyte survival, maturation and myelination. Nat Med 17:816–821

    Article  CAS  PubMed  Google Scholar 

  94. Carbajal KS, Miranda JL, Tsukamoto MR, Lane TE (2011) CXCR4 signaling regulates remyelination by endogenous oligodendrocyte progenitor cells in a viral model of demyelination. Glia 59:1813–1821

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L (2014) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266:56–63

    Article  CAS  PubMed  Google Scholar 

  96. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259

    Article  CAS  PubMed  Google Scholar 

  97. Gandhi R, Healy B, Gholipour T, Egorova S, Musallam A, Hussain MS, Nejad P, Patel B, Hei H, Khoury S, Quintana F, Kivisakk P, Chitnis T, Weiner HL (2013) Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 73:729–740

    Article  CAS  PubMed  Google Scholar 

  98. Shen Q, Temple S (2009) Fine control: microRNA regulation of adult neurogenesis. Nat Neurosci 12:369–370

    Article  CAS  PubMed  Google Scholar 

  99. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R, Meinl E (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352

    Article  PubMed  Google Scholar 

  100. Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A, Antel JP (2013) miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol 74:709–720

    Article  CAS  PubMed  Google Scholar 

  101. Juźwik CA, Drake SS, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE (2019) microRNA dysregulation in neurodegenerative diseases: a systematic review. Prog Neurobiol 182:101664

    Article  PubMed  Google Scholar 

  102. Wu T, Chen G (2016) miRNAs participate in MS pathological processes and its therapeutic response. Mediators Inflamm 2016:4578230

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49:1422–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mandolesi G, De Vito F, Musella A, Gentile A, Bullitta S, Fresegna D, Sepman H, Di Sanza C, Haji N, Mori F (2017) miR-142-3p is a key regulator of IL-1β-dependent synaptopathy in neuroinflammation. J Neurosci 37:546–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lescher J, Paap F, Schultz V, Redenbach L, Scheidt U, Rosewich H, Nessler S, Fuchs E, Gartner J, Bruck W, Junker A (2012) MicroRNA regulation in experimental autoimmune encephalomyelitis in mice and marmosets resembles regulation in human multiple sclerosis lesions. J Neuroimmunol 246:27–33

    Article  CAS  PubMed  Google Scholar 

  106. Rao VTS, Fuh SC, Moore CS, Ludwin SK, Ho MK, Bedell BJ, Bar-Or A, Antel JP (2014) Expression profiles of inflammation associated microRNAs in astrocytes from multiple sclerosis lesions (Abstract, P620). In: Proceedings of the 2014 Joint ECTRIMS-ACTRIMS meeting (MSBoston 2014). Multiple Sclerosis Journal 20(S1):285–496

  107. Ingram G, Hakobyan S, Hirst CL, Harris CL, Pickersgill TP, Cossburn MD, Loveless S, Robertson NP, Morgan BP (2010) Complement regulator factor H as a serum biomarker of multiple sclerosis disease state. Brain 133:1602–1611

    Article  PubMed  Google Scholar 

  108. Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ (2010) Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 285:38951–38960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508

    Article  CAS  PubMed  Google Scholar 

  110. Heidenreich KA, Linseman DA (2004) Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival. Mol Neurobiol 29:155–166

    Article  CAS  PubMed  Google Scholar 

  111. Li H, Radford JC, Ragusa MJ, Shea KL, McKercher SR, Zaremba JD, Soussou W, Nie Z, Kang YJ, Nakanishi N, Okamoto S, Roberts AJ, Schwarz JJ, Lipton SA (2008) Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc Natl Acad Sci U.S.A 105:9397–9402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O, Schwarz JJ, Murphy KM (2008) Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nature immunology 9:603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fu W, Wei J, Gu J (2006) MEF2C mediates the activation induced cell death (AICD) of macrophages. Cell Res 16:559–565

    Article  CAS  PubMed  Google Scholar 

  114. Bhat NR, Zhang P, Mohanty SB (2007) p38 MAP kinase regulation of oligodendrocyte differentiation with CREB as a potential target. Neurochem Res 32:293–302

    Article  CAS  PubMed  Google Scholar 

  115. Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A, Singer O, David E, Winter DR, Smith LK, Kertser A, Baruch K, Rosenzweig N, Terem A, Prinz M, Villeda S, Citri A, Amit I, Schwartz M (2017) Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat Commun 8:717

    Article  PubMed  PubMed Central  Google Scholar 

  116. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1081

    Article  CAS  PubMed  Google Scholar 

  117. Riederer BM (2007) Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 71:541–558

    Article  CAS  PubMed  Google Scholar 

  118. Dangond F, Donnelly A, Hohlfeld R, Lubetzki C, Kohlhaas S, Leocani L, Ciccarelli O, Stankoff B, Sormani MP, Chataway J (2021) Facing the urgency of therapies for progressive MS—a Progressive MS Alliance proposal. Nat Rev Neurol 17:185–192

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from Royan Institute (grant number #2100) and Tarbiat Modares University (grant number no. 310860) provided to M.J.

Author information

Authors and Affiliations

Authors

Contributions

AMK and AR drafted the first version of the paper; HB and MJ revised and edited the paper; MJ raised up the concept and approved the final version of the paper.

Corresponding author

Correspondence to Mohammad Javan.

Ethics declarations

Ethical approval

None

Informed consent

All authors were consent to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtarzadeh Khanghahi, A., Rayatpour, A., Baharvand, H. et al. Neuroglial components of brain lesions may provide new therapeutic strategies for multiple sclerosis. Neurol Sci 44, 3795–3807 (2023). https://doi.org/10.1007/s10072-023-06915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06915-5

Keywords

Navigation