Skip to main content

Advertisement

Log in

Soluble TREM2 in body fluid in Alzheimer’s disease and Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Previous studies showed conflicting results regarding soluble triggering receptor expressed on myeloid cells 2 (sTREM2) level alteration in body fluid in Alzheimer’s disease (AD) and Parkinson’s disease (PD).

Methods

We applied the STATA 12.0 software to compute standard mean difference (SMD) and 95% confidence interval (CI).

Results

The study showed elevated sTREM2 level in cerebrospinal fluid (CSF) in AD, mild cognitive impairment (MCI), and preclinical AD (pre-AD) patients, compared to healthy controls (HCs) with random effects models (AD: SMD 0.28, 95% CI 0.12 to 0.44, I2 = 77.6%, p < 0.001; MCI: SMD 0.29, 95% CI 0.09 to 0.48, I2 = 89.7%, p < 0.001; pre-AD: SMD 0.24, 95% CI 0.00 to 0.48, I2 = 80.8%, p < 0.001). The study showed no significant difference in sTREM2 level in plasma between AD patients and HCs with a random effects model (SMD 0.06, 95% CI − 0.16 to 0.28, I2 = 65.6%, p = 0.008). The study showed no significant difference in sTREM2 level in CSF or plasma between PD patients and HCs with random effects models (CSF: SMD 0.33, 95% CI − 0.02 to 0.67, I2 = 85.6%, p < 0.001; plasma: SMD 0.37, 95% CI − 0.17 to 0.92, I2 = 77.8%, p = 0.011).

Conclusions

In conclusion, the study highlighted the CSF sTREM2 as a promising biomarker in the different clinical stages of AD. More studies were essential to explore the CSF and plasmatic concentrations of sTREM2 alteration in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data and materials in this manuscript are available via contacting the corresponding author on proper request.

References

  1. Wang HY, Lin ZL, Yu XF, Bao Y, Cui XS, Kim NH (2016) Computational prediction of Alzheimer’s and Parkinson’s disease microRNAs in domestic animals. Asian-Australas J Anim Sci 29:782–792

    CAS  PubMed  Google Scholar 

  2. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  3. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    CAS  PubMed  Google Scholar 

  4. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377

    PubMed  Google Scholar 

  5. Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J, Engelborghs S, Vandenbulcke M, Van Dongen J, Geerts N, Maes G, Mattheijssens M, Peeters K, Cras P, Vandenberghe R, De Deyn PP, Van Broeckhoven C, Cruts M, Sleegers K (2014) Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35:726.e711-729

    Google Scholar 

  6. Guerreiro RJ, Lohmann E, Brás JM, Gibbs JR, Rohrer JD, Gurunlian N, Dursun B, Bilgic B, Hanagasi H, Gurvit H, Emre M, Singleton A, Hardy J (2013) Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 70:78–84

    PubMed  PubMed Central  Google Scholar 

  7. Numasawa Y, Yamaura C, Ishihara S, Shintani S, Yamazaki M, Tabunoki H, Satoh JI (2011) Nasu-Hakola disease with a splicing mutation of TREM2 in a Japanese family. Eur J Neurol 18:1179–1183

    CAS  PubMed  Google Scholar 

  8. Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, Öhrfelt A, Blennow K, Hardy J, Schott J, Mills K, Zetterberg H (2016) Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener 11:3

    PubMed  PubMed Central  Google Scholar 

  9. Ewers M, Franzmeier N, Suarez-Calvet M, Morenas-Rodriguez E, Caballero MAA, Kleinberger G, Piccio L, Cruchaga C, Deming Y, Dichgans M, Trojanowski JQ, Shaw LM, Weiner MW, Haass C, Alzheimers Dis Neuroimaging I (2019) Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. Sci Transl Med 11:507

  10. Henjum K, Almdahl IS, Årskog V, Minthon L, Hansson O, Fladby T, Nilsson LN (2016) Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease. Alzheimers Res Ther 8:17

    PubMed  PubMed Central  Google Scholar 

  11. Peng G, Qiu J, Liu H, Zhou M, Huang S, Guo W, Lin Y, Chen X, Li Z, Li G, Zhang W, Zhang Y, Li X, Wu Z, Wei L, Yang X, Zhu X, Mo M, Xu P (2020) Analysis of cerebrospinal fluid soluble TREM2 and polymorphisms in sporadic Parkinson’s disease in a Chinese population 70(2):294–301

  12. Qin Q, Wan H, Wang D, Li J, Qu Y, Zhao J, Li J, Xue Z (2022) The association of CSF sTREM2 with cognitive decline and its dynamic change in Parkinson’s disease: analysis of the PPMI cohort. Front Aging Neurosci 14:892493

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu N, Tan MS, Yu JT, Sun L, Tan L, Wang YL, Jiang T, Tan L (2014) Increased expression of TREM2 in peripheral blood of Alzheimer’s disease patients. J Alzheimers Dis 38:497–501

    CAS  PubMed  Google Scholar 

  14. Kleinberger G, Yamanishi Y, Suárez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri F, Tahirovic S, Lleó A, Alcolea D, Fortea J, Willem M, Lammich S, Molinuevo JL, Sánchez-Valle R, Antonell A, Ramirez A, Heneka MT, Sleegers K, van der Zee J, Martin JJ, Engelborghs S, Demirtas-Tatlidede A, Zetterberg H, Van Broeckhoven C, Gurvit H, Wyss-Coray T, Hardy J, Colonna M, Haass C (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra286

    Google Scholar 

  15. Gispert JD, Suárez-Calvet M, Monté GC, Tucholka A, Falcon C, Rojas S, Rami L, Sánchez-Valle R, Lladó A, Kleinberger G, Haass C, Molinuevo JL (2016) Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer’s disease. Alzheimers Dement 12:1259–1272

    PubMed  Google Scholar 

  16. Piccio L, Deming Y, Del-Águila JL, Ghezzi L, Holtzman DM, Fagan AM, Fenoglio C, Galimberti D, Borroni B, Cruchaga C (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131:925–933

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Suárez-Calvet M, Kleinberger G, Araque Caballero M, Brendel M, Rominger A, Alcolea D, Fortea J, Lleó A, Blesa R, Gispert JD, Sánchez-Valle R, Antonell A, Rami L, Molinuevo JL, Brosseron F, Traschütz A, Heneka MT, Struyfs H, Engelborghs S, Sleegers K, Van Broeckhoven C, Zetterberg H, Nellgård B, Blennow K, Crispin A, Ewers M, Haass C (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8:466–476

    PubMed  PubMed Central  Google Scholar 

  18. Gispert JD, Monté GC, Suárez-Calvet M, Falcon C, Tucholka A, Rojas S, Rami L, Sánchez-Valle R, Lladó A, Kleinberger G, Haass C, Molinuevo JL (2017) The APOE ε4 genotype modulates CSF YKL-40 levels and their structural brain correlates in the continuum of Alzheimer’s disease but not those of sTREM2. Alzheimers Dement (Amst) 6:50–59

    PubMed  Google Scholar 

  19. Bekris LM, Khrestian M, Dyne E, Shao Y, Pillai JA, Rao SM, Bemiller SM, Lamb B, Fernandez HH, Leverenz JB (2018) Soluble TREM2 and biomarkers of central and peripheral inflammation in neurodegenerative disease. J Neuroimmunol 319:19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brosseron F, Traschütz A, Widmann CN, Kummer MP, Tacik P, Santarelli F, Jessen F, Heneka MT (2018) Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimers Res Ther 10:25

    PubMed  PubMed Central  Google Scholar 

  21. Liu C, Yu J (2019) Genome-wide association studies for cerebrospinal fluid soluble TREM2 in Alzheimer’s disease. Front Aging Neurosci 11:297

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Morenas-Rodriguez E, Alcolea D, Suarez-Calvet M, Munoz-Llahuna L, Vilaplana E, Sala I, Subirana A, Querol-Vilaseca M, Carmona-Iragui M, Illan-Gala I, Ribosa-Nogue R, Blesa R, Haass C, Fortea J, Lleo A (2019) Different pattern of CSF glial markers between dementia with Lewy bodies and Alzheimer’s disease. Sci Rep 9(1):7803

  23. Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, Schlepckow K, Araque Caballero M, Franzmeier N, Capell A, Fellerer K, Nuscher B, Eren E, Levin J, Deming Y, Piccio L, Karch CM, Cruchaga C, Shaw LM, Trojanowski JQ, Weiner M, Ewers M, Haass C (2019) Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol Neurodegener 14:1

    PubMed  PubMed Central  Google Scholar 

  24. Banerjee G, Ambler G, Keshavan A, Paterson RW, Foiani MS, Toombs J, Heslegrave A, Dickson JC, Fraioli F, Groves AM, Lunn MP, Fox NC, Zetterberg H, Schott JM, Werring DJ (2020) Cerebrospinal fluid biomarkers in cerebral amyloid angiopathy. J Alzheimers Dis 74:1189–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Edwin TH, Henjum K, Nilsson LNG, Watne LO, Persson K, Eldholm RS, Saltvedt I, Halaas NB, Selbæk G, Engedal K, Strand BH, Knapskog AB (2020) A high cerebrospinal fluid soluble TREM2 level is associated with slow clinical progression of Alzheimer’s disease. Alzheimers Dement (Amst) 12:e12128

    PubMed  Google Scholar 

  26. Ferri E, Rossi PD, Geraci A, Ciccone S, Cesari M, Arosio B (2020) The sTREM2 concentrations in the blood: a marker of neurodegeneration? Front Mol Biosci 7:627931

    CAS  PubMed  Google Scholar 

  27. Franzmeier N, Suárez-Calvet M, Frontzkowski L, Moore A, Hohman TJ, Morenas-Rodriguez E, Nuscher B, Shaw L, Trojanowski JQ, Dichgans M, Kleinberger G, Haass C, Ewers M (2020) Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration. Mol Neurodegener 15:57

    PubMed  PubMed Central  Google Scholar 

  28. Halaas NB, Henjum K, Blennow K, Dakhil S, Idland AV, Nilsson LN, Sederevicius D, Vidal-Piñeiro D, Walhovd KB, Wyller TB, Zetterberg H, Watne LO, Fjell AM (2020) CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults. Cereb Cortex 30:2295–2306

    PubMed  Google Scholar 

  29. Ma LZ, Tan L, Bi YL, Shen XN, Xu W, Ma YH, Li HQ, Dong Q, Yu JT (2020) Dynamic changes of CSF sTREM2 in preclinical Alzheimer’s disease: the CABLE study. Mol Neurodegener 15:25

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Milà-Alomà M, Salvadó G, Gispert JD, Vilor-Tejedor N, Grau-Rivera O, Sala-Vila A, Sánchez-Benavides G, Arenaza-Urquijo EM, Crous-Bou M, González-de-Echávarri JM, Minguillon C, Fauria K, Simon M, Kollmorgen G, Zetterberg H, Blennow K, Suárez-Calvet M, Molinuevo JL (2020) Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement 16:1358–1371

    PubMed  PubMed Central  Google Scholar 

  31. Rauchmann BS, Sadlon A, Perneczky R (2020) Soluble TREM2 and inflammatory proteins in Alzheimer’s disease cerebrospinal fluid. J Alzheimers Dis 73:1615–1626

    CAS  PubMed  Google Scholar 

  32. Wilson EN, Swarovski MS, Linortner P, Shahid M, Zuckerman AJ, Wang Q, Channappa D, Minhas PS, Mhatre SD, Plowey ED, Quinn JF, Zabetian CP, Tian L, Longo FM, Cholerton B, Montine TJ, Poston KL, Andreasson KI (2020) Soluble TREM2 is elevated in Parkinson’s disease subgroups with increased CSF tau. Brain 143:932–943

    PubMed  PubMed Central  Google Scholar 

  33. Bartl M, Dakna M, Galasko D, Hutten SJ, Foroud T, Quan M, Marek K, Siderowf A, Franz J, Trenkwalder C, Mollenhauer B (2021) Biomarkers of neurodegeneration and glial activation validated in Alzheimer’s disease assessed in longitudinal cerebrospinal fluid samples of Parkinson’s disease. PLoS One 16:e0257372

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Diaz-Lucena D, Kruse N, Thune K, Schmitz M, Villar-Pique A, da Cunha JEG, Hermann P, Lopez-Perez O, Andres-Benito P, Ladogana A, Calero M, Vidal E, Riggert J, Pineau H, Sim V, Zetterberg H, Blennow K, del Rio JA, Marin-Moreno A, Espinosa JC, Torres JM, Sanchez-Valle R, Mollenhauer B, Ferrer I, Zerr I, Llorens F (2021) TREM2 expression in the brain and biological fluids in prion diseases. Acta Neuropathol 141:841–859

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma LZ, Hu H, Wang ZT, Ou YN, Dong Q, Tan L, Yu JT (2021) P-tau and neurodegeneration mediate the effect of β-amyloid on cognition in non-demented elders. Alzheimers Res Ther 13:200

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mo M, Tang Y, Wei L, Qiu J, Peng G, Lin Y, Zhou M, Dai W, Zhang Z, Chen X, Liu H, Ding L, Ye P, Wu Y, Zhu X, Wu Z, Guo W, Xu P (2021) Soluble triggering receptor expressed on myeloid cells 2 from cerebrospinal fluid in sleep disorders related to Parkinson’s disease. Front Aging Neurosci 13:753210

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schulz I, Kruse N, Gera RG, Kremer T, Cedarbaum J, Barbour R, Zago W, Schade S (2021) Systematic assessment of 10 biomarker candidates focusing on α-synuclein-related disorders. Mov Disord 36(12):2874–2887

  38. Van Hulle C, Jonaitis EM, Betthauser TJ, Batrla R, Wild N, Kollmorgen G, Andreasson U, Okonkwo O, Bendlin BB, Asthana S, Carlsson CM, Johnson SC, Zetterberg H, Blennow K (2021) An examination of a novel multipanel of CSF biomarkers in the Alzheimer’s disease clinical and pathological continuum. Alzheimers Dement 17:431–445

    PubMed  Google Scholar 

  39. Chen YH, Lin RR, Huang HF, Xue YY, Tao QQ (2022) Microglial activation, tau pathology, and neurodegeneration biomarkers predict longitudinal cognitive decline in Alzheimer’s disease continuum. Front Aging Neurosci 14:848180

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Winfree RL, Dumitrescu L, Blennow K, Zetterberg H, Gifford KA, Pechman KR, Jefferson AL, Hohman TJ (2022) Biological correlates of elevated soluble TREM2 in cerebrospinal fluid. Neurobiol Aging 118:88–98

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu D, Cao B, Zhao Y, Huang H, McIntyre RS, Rosenblat JD, Zhou H (2018) Soluble TREM2 changes during the clinical course of Alzheimer’s disease: a meta-analysis. Neurosci Lett 686:10–16

    CAS  PubMed  Google Scholar 

  42. Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J 2nd, Naismith RT, Panina-Bordignon P, Passini N, Galimberti D, Scarpini E, Colonna M, Cross AH (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131:3081–3091

    PubMed  PubMed Central  Google Scholar 

  43. Jay TR, von Saucken VE, Landreth GE (2017) TREM2 in neurodegenerative diseases. Mol Neurodegener 12:56

    PubMed  PubMed Central  Google Scholar 

  44. Colonna M, Wang Y (2016) TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17:201–207

    CAS  PubMed  Google Scholar 

  45. Yeh FL, Hansen DV, Sheng M (2017) TREM2, microglia, and neurodegenerative diseases. Trends Mol Med 23:512–533

    CAS  PubMed  Google Scholar 

  46. Golde TE, Streit WJ, Chakrabarty P (2013) Alzheimer’s disease risk alleles in TREM2 illuminate innate immunity in Alzheimer’s disease. Alzheimers Res Ther 5:24

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wunderlich P, Glebov K, Kemmerling N, Tien NT, Neumann H, Walter J (2013) Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and γ-secretase-dependent intramembranous cleavage. J Biol Chem 288:33027–33036

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang J, Fu Z, Zhang X, Xiong M, Meng L, Zhang Z (2020) TREM2 ectodomain and its soluble form in Alzheimer’s disease. J Neuroinflammation 17:204

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    CAS  PubMed  Google Scholar 

  50. Harms MB, Neumann D, Benitez BA, Cooper B, Carrell D, Racette BA, Perlmutter JS, Goate A, Cruchaga C (2013) Parkinson disease is not associated with C9ORF72 repeat expansions. Neurobiol Aging 34:1519.e1511–1512

    Google Scholar 

  51. Ren M, Guo Y, Wei X, Yan S, Qin Y, Zhang X, Jiang F, Lou H (2018) TREM2 overexpression attenuates neuroinflammation and protects dopaminergic neurons in experimental models of Parkinson’s disease. Exp Neurol 302:205–213

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (no. 81901108).

Author information

Authors and Affiliations

Authors

Contributions

Lihua Gu contributed to the design of the study, plan the present study, and supervise the project. Lihua Gu and Hao Shu were in charge of article inclusion and had the major responsibility for analysis and manuscript writing. Yanjuan Wang was in charge of software use. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lihua Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agree with the content and approve the publication of the manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Shu, H. & Wang, Y. Soluble TREM2 in body fluid in Alzheimer’s disease and Parkinson’s disease. Neurol Sci 44, 2743–2751 (2023). https://doi.org/10.1007/s10072-023-06729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06729-5

Keywords

Navigation