Skip to main content

Advertisement

Log in

Quantification of retinal ganglion cell loss in patients with homonymous visual field defect due to stroke

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

To quantify the degree of ganglion cell degeneration through spectral domain optical coherence tomography (SD-OCT) in adult patients with post-stroke homonymous visual field defect.

Methods

Fifty patients with acquired visual field defect due to stroke (mean age = 61 years) and thirty healthy controls (mean age = 58 years) were included. Mean deviation (MD) and pattern standard deviation (PSD), average peripapillary retinal nerve fibre layer thickness (pRNLF-AVG), average ganglion cell complex thickness (GCC-AVG), global loss volume (GLV) and focal loss volume (FLV) were measured. Patients were divided according to the damaged vascular territories (occipital vs. parieto-occipital) and stroke type (ischaemic vs. haemorrhagic). Group analysis was conducted with ANOVA and multiple regressions.

Results

pRNFL-AVG was significantly decreased among patients with lesions in parieto-occipital territories compared to controls and to patients with lesions in occipital territories (p = .04), with no differences with respect to stroke type. GCC-AVG, GLV and FLV differed in stroke patients and controls, regardless of stroke type and involved vascular territories. Age and elapsed time from stroke had a significant effect on pRNFL-AVG and GCC-AVG (p < .01), but not on MD and PSD.

Conclusions

Reduction of SD-OCT parameters occurs following both ischaemic and haemorrhagic occipital stroke, but it is larger when the injury extends to parietal territories and increases as time since stroke increases. The size of visual field defect is unrelated to SD-OCT measurements. Macular GCC thinning appeared to be more sensitive than pRNFL in detecting retrograde retinal ganglion cell degeneration and its retinotopic pattern in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data analysed in present study are available on the Open Science Framework (OSF) repository (https://osf.io/4vkwb/).

References

  1. Hoyt WF, Rios-Montenegro EN, Behrens MM, Eckelhoff RJ (1972) Homonymous hemioptic hypoplasia. Fundoscopic features in standard and red-free illumination in three patients with congenital hemiplegia. Br J Ophthalmol 56:537–545. https://doi.org/10.1136/bjo.56.7.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beatty RM, Sadun AA, Smith L, Vonsattel JP, Richardson EP Jr (1982) Direct demonstration of transsynaptic degeneration in the human visual system: a comparison of retrograde and anterograde changes. J Neurol Neurosurg Psychiatry 45:143–146. https://doi.org/10.1136/jnnp.45.2.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mehta JS, Plant GT (2005) Optical coherence tomography (OCT) findings in congenital/long-standing homonymous hemianopia. Am J Ophthalmol 140:727–729. https://doi.org/10.1016/j.ajo.2005.03.059

    Article  PubMed  Google Scholar 

  4. Yamashita T, Miki A, Goto K, Araki S, Takizawa G, Ieki Y, Kiryu J, Tabuchi A, Iguchi Y, Kimura K, Yagita Y (2019) Evaluation of significance maps and the analysis of the longitudinal time course of the macular ganglion cell complex thicknesses in acquired occipital homonymous hemianopia using spectral-domain optical coherence tomography. Neuroophthalmology 44:236–245. https://doi.org/10.1080/01658107.2019.1686764

    Article  PubMed  PubMed Central  Google Scholar 

  5. Van Buren JM (1963) Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 26:402–429. https://doi.org/10.1136/jnnp.26.5.402

    Article  PubMed Central  Google Scholar 

  6. Cowey A (1974) Atrophy of retinal ganglion cells after removal of striate cortex in a rhesus monkey. Perception 3:257–260. https://doi.org/10.1068/p030257

    Article  CAS  PubMed  Google Scholar 

  7. Cowey A, Alexander I, Stoerig P (2011) Transneuronal retrograde degeneration of retinal ganglion cells and optic tract in hemianopic monkeys and humans. Brain 134:2149–2157. https://doi.org/10.1093/brain/awr125

    Article  PubMed  Google Scholar 

  8. Bridge H, Jindahra P, Barbur J, Plant GT (2011) Imaging reveals optic tract degeneration in hemianopia. Invest Ophthalmol Vis Sci 52:382–388. https://doi.org/10.1167/iovs.10-5708

    Article  PubMed  Google Scholar 

  9. Miller NR, Newman NJ (1995) Walsh and Hoyt’s clinical neuro-ophthalmology. 5th edn. The Williams & Wilkin Company, Baltimore

  10. Yamashita T, Miki A, Iguchi Y, Kimura K, Maeda F, Kiryu J (2012) Reduced retinal ganglion cell complex thickness in patients with posterior cerebral artery infarction detected using spectral-domain optical coherence tomography. Jpn J Ophthalmol 56:502–510. https://doi.org/10.1007/s10384-012-0146-3

    Article  PubMed  Google Scholar 

  11. Park HYL, Park YG, Cho AH, Park CK (2013) Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. Ophthalmology 120:1292–1299. https://doi.org/10.1016/j.ophtha.2012.11.021

    Article  PubMed  Google Scholar 

  12. Jindahra P, Petrie A, Plant GT (2012) The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 135:534–541. https://doi.org/10.1093/brain/awr324

    Article  PubMed  Google Scholar 

  13. Goto K, Miki A, Yamashita T, Araki S, Takizawa G, Nakagawa M, Ieki Y, Kiryu J (2016) Sectoral analysis of the retinal nerve fiber layer thinning and its association with visual field loss in homonymous hemianopia caused by post-geniculate lesions using spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 254:745–756. https://doi.org/10.1007/s00417-015-3181-1

    Article  PubMed  Google Scholar 

  14. Schwartz SG, Monroig A, Flynn HW (2017) Progression of transsynaptic retinal degeneration with spectral-domain optical coherence tomography. Am J Ophthalmol 5:67–72

    Google Scholar 

  15. Jindahra P, Petrie A, Plant GT (2009) Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain 132:628–634. https://doi.org/10.1093/brain/awp001

    Article  PubMed  Google Scholar 

  16. Keller J, Sanchez-Dalmau BF, Villoslada P (2014) Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. PLoS One 9:e97444. https://doi.org/10.1371/journal.pone.0097444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamashita T, Miki A, Goto K, Araki S, Takizawa G, Ieki Y, Kiryu J, Tabuchi A, Iguchi Y, Kimura K, Yagita Y (2016) Retinal ganglion cell atrophy in homonymous memianopia due to acquired occipital lesions observed using cirrus high-definition-OCT. J Ophthalmol 2016:2394957. https://doi.org/10.1155/2016/2394957

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Vries-Knoppert WA, Baaijen JC, Petzold A (2019) Patterns of retrograde axonal degeneration in the visual system. Brain 142:2775–2786

    Article  PubMed  Google Scholar 

  19. Kim YJ, Kang MH, Cho HY, Lim HW, Seong M (2014) Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol 58:244–251. https://doi.org/10.1007/s10384-014-0315-7

    Article  CAS  PubMed  Google Scholar 

  20. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314. https://doi.org/10.1016/j.ophtha.2009.05.025

    Article  PubMed  Google Scholar 

  21. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, Kim YJ, Park SB, Hong HE, Kook MS (2010) Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51:1446–1452. https://doi.org/10.1167/iovs.09-4258

    Article  PubMed  Google Scholar 

  22. Kardon RH (2011) Role of the macular optical coherence tomography scan in neuro-ophthalmology. J Neuroophthalmol 31:353–361. https://doi.org/10.1097/WNO.0b013e318238b9cb

    Article  PubMed  PubMed Central  Google Scholar 

  23. Le PV, Tan O, Chopra V, Francis BA, Ragab O, Varma R, Huang D (2013) Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma. Invest Ophthalmol Vis Sci 54:4287–4295. https://doi.org/10.1167/iovs.12-11388

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meier PG, Maeder P, Kardon RH, Borruat FX (2015) Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. J Neuroophthalmol 35:112–116. https://doi.org/10.1097/WNO.0000000000000182

    Article  PubMed  Google Scholar 

  25. Moon H, Yoon JY, Lim HT, Sung KR (2015) Ganglion cell and inner plexiform layer thickness determined by spectral domain optical coherence tomography in patients with brain lesions. Br J Ophthalmol 99:329–335. https://doi.org/10.1136/bjophthalmol-2014-305361

    Article  PubMed  Google Scholar 

  26. GBD 2019 Stroke Collaborators (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol 20:795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  Google Scholar 

  27. GBD 2019 Diseases and Injuries Collaborators (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396:1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9

    Article  Google Scholar 

  28. Sand KM, Thomassen L, Næss H, Rødahl E, Hoff JM (2012) Diagnosis and rehabilitation of visual field defects in stroke patients: a retrospective audit. Cerebrovasc Dis Extra 2:17–23. https://doi.org/10.1159/000337016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grasso PA, Gallina J, Bertini C (2020) Shaping the visual system: cortical and subcortical plasticity in the intact and the lesioned brain. Neuropsychologia. 142:107464. https://doi.org/10.1016/j.neuropsychologia.2020.107464

    Article  PubMed  Google Scholar 

  30. Tiel K, Kolmel HW (1991) Patterns of recovery from homonymous hemianopia subsequent to infarction in the distribution of the posterior cerebral artery. Neuroophthalmology 11:33–39. https://doi.org/10.3109/01658109109009640

    Article  Google Scholar 

  31. Schneider CL, Prentiss EK, Busza A, Matmati K, Matmati N, Williams ZR, Sahin B, Mahon BZ (2019) Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent. Proc Biol Sci 286:20182733. https://doi.org/10.1098/rspb.2018.2733

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rowe FJ, Wright D, Brand D, Jackson C, Harrison S, Maan T, Scott C, Vogwell L, Peel S, Akerman N, Dodridge C, Howard C, Shipman T, Sperring U, Macdiarmid S, Freeman C (2013) A prospective profile of visual field loss following stroke: prevalence, type, rehabilitation, and outcome. Biomed Res Int 2013:719096. https://doi.org/10.1155/2013/719096

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hankey GJ (2017) Stroke. Lancet 389:641–654. https://doi.org/10.1016/S0140-6736(16)30962-X

    Article  PubMed  Google Scholar 

  34. O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, Rao-Melacini P, Zhang X, Pais P, Agapay S, Lopez-Jaramillo P, Damasceno A, Langhorne P, McQueen MJ, Rosengren A, Dehghan M, Hankey GJ, Dans AL, Elsayed A, Avezum A, Mondo C, Diener HC, Ryglewicz D, Czlonkowska A, Pogosova N, Weimar C, Iqbal R, Diaz R, Yusoff K, Yusufali A, Oguz A, Wang X, Penaherrera E, Lanas F, Ogah OS, Ogunniyi A, Iversen HK, Malaga G, Rumboldt Z, Oveisgharan S, Al Hussain F, Magazi D, Nilanont Y, Ferguson J, Pare G, Yusuf S; INTERSTROKE investigators (2016) Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 388:761-75. https://doi.org/10.1016/S0140-6736(16)30506-2

Download references

Acknowledgements

Research funded by the Italian Ministry of Health to Nadia Bolognini (Grant number: GR-2016-02362497) and Stefania Bianchi Marzoli.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefania Bianchi Marzoli or Nadia Bolognini.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 315 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi Marzoli, S., Melzi, L., Ciasca, P. et al. Quantification of retinal ganglion cell loss in patients with homonymous visual field defect due to stroke. Neurol Sci 44, 2811–2819 (2023). https://doi.org/10.1007/s10072-023-06675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06675-2

Keywords

Navigation