Skip to main content

Advertisement

Log in

Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The main objectives of this study are to evaluate 28 selected pro-angiogenic and anti-angiogenic microRNA (miRNA) expressions in plasma of acute ischemic stroke (AIS) patients and controls and to assess the correlations of these miRNAs with risk and severity of AIS. In the exploring stage, 10 AIS patients and 10 controls with vascular risk factors were enrolled. And in the validating stage, 106 AIS patients and 110 controls with the same eligibility were recruited. Blood samples were collected from participants within 24 h post the onset of symptoms, and plasma levels of miRNAs were evaluated by the qPCR method. In the exploring stage, 11 differentially expressed miRNAs (DEM) were identified and included into the validating stage. In the validating stage, the expression of miR-126, miR-130a, and miR-378 in plasma declined in the AIS patients; however, miR-222, miR-218, and miR-185 plasma levels were elevated. Univariate and multivariate logistic regression analysis disclosed that miR-126, miR-130a, miR-222, miR-218, and miR-185 were independent predicting factors for AIS. When these five DEMs were combined together, they presented a good diagnostic value with an area under curve (AUC) value of 0.767 (95% CI 0.705–0.829), sensitivity of 87.7%, and specificity of 54.5% at best cutoff point. Additionally, miR-126, miR-378, miR-101, miR-222, miR-218, and miR-206 were associated with National Institutes of Health Stroke Scale (NIHSS) score. Circulating miR-126, miR-130a, miR-222, miR-218, and miR-185 could be served as promising and independent biomarkers for risk of AIS, and miR-126, miR-378, miR-222, miR-101, miR-218, and miR-206 could be used for disease severity management of AIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O'Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C, Global Burden of Diseases I, Risk Factors S, the GBDSEG (2014) Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 383(9913):245–254

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prabhakaran S, Ruff I, Bernstein RA (2015) Acute stroke intervention: a systematic review. JAMA 313(14):1451–1462. doi:10.1001/jama.2015.3058

    Article  CAS  PubMed  Google Scholar 

  3. Hankey GJ (2016) Stroke. Lancet. doi:10.1016/S0140-6736(16)30962-X

  4. Yates LA, Norbury CJ, Gilbert RJ (2013) The long and short of microRNA. Cell 153(3):516–519. doi:10.1016/j.cell.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  5. Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43(10):521–528. doi:10.1152/physiolgenomics.00158.2010

    Article  CAS  PubMed  Google Scholar 

  6. Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PT, Jeyaseelan K (2011) microRNAs in stroke pathogenesis. Curr Mol Med 11(2):76–92

    Article  CAS  PubMed  Google Scholar 

  7. Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M (2017) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke 19(2):166–187. doi:10.5853/jos.2016.01368

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhan X, Jickling GC, Tian Y, Stamova B, Xu H, Ander BP, Turner RJ, Mesias M, Verro P, Bushnell C, Johnston SC, Sharp FR (2011) Transient ischemic attacks characterized by RNA profiles in blood. Neurology 77(19):1718–1724. doi:10.1212/WNL.0b013e318236eee6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39(3):959–966. doi:10.1161/STROKEAHA.107.500736

    Article  CAS  PubMed  Google Scholar 

  10. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D (2014) microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One 9(6):e99283. doi:10.1371/journal.pone.0099283

    Article  PubMed  PubMed Central  Google Scholar 

  11. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW (2013) Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13:178. doi:10.1186/1471-2377-13-178

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang ZB, Zhang Z, Li TB, Lou Z, Li SY, Yang H, Yang J, Luo XJ, Peng J (2014) Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke. Clin Sci (Lond) 127(12):679–689. doi:10.1042/CS20140084

    Article  CAS  Google Scholar 

  13. Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, Yan F, Liu X, Yu S, Ji X, Luo Y (2015) MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 46(2):513–519. doi:10.1161/STROKEAHA.114.007482

    Article  CAS  PubMed  Google Scholar 

  14. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, Tao Z, Xu C, Song J, Ji X, Luo Y (2013) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44(6):1706–1713. doi:10.1161/STROKEAHA.111.000504

    Article  CAS  PubMed  Google Scholar 

  15. Fan Y, Shi C, Li T, Kuang T (2017) microRNA-454 shows anti-angiogenic and anti-metastatic activity in pancreatic ductal adenocarcinoma by targeting LRP6. Am J Cancer Res 7(1):139–147

    PubMed  PubMed Central  Google Scholar 

  16. Du C, Weng X, Hu W, Lv Z, Xiao H, Ding C, Gyabaah OA, Xie H, Zhou L, Wu J, Zheng S (2015) Hypoxia-inducible MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular carcinoma. J Exp Clin Cancer Res 34:67. doi:10.1186/s13046-015-0182-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tang XR, Wen X, He QM, Li YQ, Ren XY, Yang XJ, Zhang J, Wang YQ, Ma J, Liu N (2017) MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma. Cell Death Dis 8(1):e2566. doi:10.1038/cddis.2016.486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y, Wang K, Ma Z, Tian J, Shi Q, Guo P, Wang X, He D, Du Y (2016) Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget. doi:10.18632/oncotarget.14131

  19. Xue D, Yang Y, Liu Y, Wang P, Dai Y, Liu Q, Chen L, Shen J, Ju H, Li Y, Tan Z (2016) MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3zeta/STAT3/HIF-1alpha/VEGF signaling. Oncotarget 7(48):79805–79813. doi:10.18632/oncotarget.12972

    PubMed  PubMed Central  Google Scholar 

  20. Zhang T, Liu W, Zeng XC, Jiang N, Fu BS, Guo Y, Yi HM, Li H, Zhang Q, Chen WJ, Chen GH (2016) Down-regulation of microRNA-338-3p promoted angiogenesis in hepatocellular carcinoma. Biomed Pharmacother 84:583–591. doi:10.1016/j.biopha.2016.09.056

    Article  CAS  PubMed  Google Scholar 

  21. Hirakawa T, Nasu K, Abe W, Aoyagi Y, Okamoto M, Kai K, Takebayashi K, Narahara H (2016) miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod 31(11):2587–2597. doi:10.1093/humrep/dew217

    Article  PubMed  Google Scholar 

  22. Gao F, Sun M, Gong Y, Wang H, Wang Y, Hou H (2016) MicroRNA-195a-3p inhibits angiogenesis by targeting Mmp2 in murine mesenchymal stem cells. Mol Reprod Dev 83(5):413–423. doi:10.1002/mrd.22638

    Article  CAS  PubMed  Google Scholar 

  23. Hou J, Liu L, Zhu Q, Wu Y, Tian B, Cui L, Liu Y, Li X (2016) MicroRNA-185 inhibits angiogenesis in human microvascular endothelial cells through targeting stromal interaction molecule 1. Cell Biol Int 40(3):318–328. doi:10.1002/cbin.10572

    Article  CAS  PubMed  Google Scholar 

  24. Wu F, Yang Z, Li G (2009) Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun 386(4):549–553. doi:10.1016/j.bbrc.2009.06.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu HT, Xing AY, Chen X, Ma RR, Wang YW, Shi DB, Zhang H, Li P, Chen HF, Li YH, Gao P (2015) MicroRNA-27b, microRNA-101 and microRNA-128 inhibit angiogenesis by down-regulating vascular endothelial growth factor C expression in gastric cancers. Oncotarget 6(35):37458–37470. doi:10.18632/oncotarget.6059

    Article  PubMed  PubMed Central  Google Scholar 

  26. Prugger C, Luc G, Haas B, Morange PE, Ferrieres J, Amouyel P, Kee F, Ducimetiere P, Empana JP, Group PS (2013) Multiple biomarkers for the prediction of ischemic stroke: the PRIME study. Arterioscler Thromb Vasc Biol 33(3):659–666. doi:10.1161/ATVBAHA.112.300109

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Zhang Y, Huang J, Chen X, Gu X, Wang Y, Zeng L, Yang GY (2014) Increase of circulating miR-223 and insulin-like growth factor-1 is associated with the pathogenesis of acute ischemic stroke in patients. BMC Neurol 14:77. doi:10.1186/1471-2377-14-77

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, Xu T, Chen L, Xu Y (2016) Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One 11(9):e0163645. doi:10.1371/journal.pone.0163645

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wu J, Du K, Lu X (2015) Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. Int J Clin Exp Med 8(11):21071–21079

    PubMed  PubMed Central  Google Scholar 

  30. van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC, Quax PH, Rabelink TJ, van Zonneveld AJ (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13(8A):1577–1585. doi:10.1111/j.1582-4934.2008.00613.x

    Article  PubMed  Google Scholar 

  31. Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, Frantz G, Palmieri S, Hillan K, Stainier DY, De Sauvage FJ, Ye W (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428(6984):754–758. doi:10.1038/nature02416

    Article  CAS  PubMed  Google Scholar 

  32. Kong F, Zhou J, Zhou W, Guo Y, Li G, Yang L (2017) Protective role of microRNA-126 in intracerebral hemorrhage. Mol Med Rep. doi:10.3892/mmr.2017.6134

  33. Yang WZ, Yang J, Xue LP, Xiao LB, Li Y (2016) MiR-126 overexpression inhibits high glucose-induced migration and tube formation of rhesus macaque choroid-retinal endothelial cells by obstructing VEGFA and PIK3R2. J Diabetes Complicat. doi:10.1016/j.jdiacomp.2016.12.004

  34. Chen Y, Gorski DH (2008) Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111(3):1217–1226. doi:10.1182/blood-2007-07-104133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu C, Wang X, Ha T, Hu Y, Liu L, Zhang X, Yu H, Miao J, Kao R, Kalbfleisch J, Williams D, Li C (2015) Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a are mediated by suppression of PTEN and activation of PI3K dependent signaling. J Mol Cell Cardiol 89(Pt A):87–97. doi:10.1016/j.yjmcc.2015.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071. doi:10.1182/blood-2006-01-012369

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Song YH, Li F, Yang T, Lu YW, Geng YJ (2009) MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 381(1):81–83. doi:10.1016/j.bbrc.2009.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF (2010) microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol 30(8):1562–1568. doi:10.1161/ATVBAHA.110.206201

    Article  CAS  PubMed  Google Scholar 

  39. Han S, Kong YC, Sun B, Han QH, Chen Y, Wang YC (2016) microRNA-218 inhibits oxygen-induced retinal neovascularization via reducing the expression of roundabout 1. Chin Med J 129(6):709–715. doi:10.4103/0366-6999.178013

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A 104(51):20350–20355. doi:10.1073/pnas.0706901104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was not supported by any special fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Jin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

The Ethics Committee of Cangzhou Central Hospital approved this study. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Xing, J. Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol Sci 38, 2015–2023 (2017). https://doi.org/10.1007/s10072-017-3071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-3071-x

Keywords

Navigation