Skip to main content

Advertisement

Log in

Negative impact of high cumulative glucocorticoid dose on bone metabolism of patients with myasthenia gravis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

This current study aimed to evaluate the frequency of low bone mass, osteopenia, and osteoporosis in patients with myasthenia gravis (MG) and to investigate the possible association between bone mineral density (BMD) and plasma levels of bone metabolism markers. Eighty patients with MG and 62 controls BMD were measured in the right femoral neck and lumbar spine by dual-energy X-ray absorptiometry. Plasma concentrations of osteocalcin, osteopontin, osteoprotegerin, tumor necrosis factor (TNF-α), interleukin (IL)-1β, IL-6, dickkopf (DKK-1), sclerostin, insulin, leptin, adrenocorticotropic hormone, parathyroid hormone, and fibroblast growth factor (FGF-23) were analyzed by Luminex®. The mean age of patients was 41.9 years, with 13.5 years of length of illness, and a mean cumulative dose of glucocorticoids 38,123 mg. Patients had significant reduction in BMD of the lumbar, the femoral neck, and in the whole body when compared with controls. Fourteen percent MG patients had osteoporosis at the lumbar spine and 2.5% at the femoral neck. In comparison with controls, patients with MG presented lower levels of osteocalcin, adrenocorticotropic hormone, parathyroid hormone, sclerostin, TNF-α, and DKK-1 and higher levels of FGF-23, leptin, and IL-6. There was a significant negative correlation between cumulative glucocorticoid dose and serum calcium, lumbar spine T-score, femoral neck BMD, T-score, and Z-score. After multivariate analysis, higher TNF-α levels increased the likelihood of presenting low bone mass by 2.62. MG patients under corticotherapy presented low BMD and altered levels of bone markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Farrugia ME, Vincent A (2010) Autoimmune mediated neuromuscular junction defects. Curr Opin Neurol 23:489–495

    Article  CAS  PubMed  Google Scholar 

  2. Kumar V, Kaminski HJ (2011) Treatment of myasthenia gravis. Curr Neurol Neurosci Rep 11:89–96

    Article  CAS  PubMed  Google Scholar 

  3. Grossman JM, Gordon R, Ranganath VK, Deal C, Caplan L, Chen W, Curtis JR, Furst DE, McMahon M, Patkar NM, Volkmann E, Saag KG (2010) American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res 62:1515–1526

    Article  Google Scholar 

  4. Wakata N, Nemoto H, Sugimoto H (2004) Bone density in myasthenia gravis patients receiving long-term prednisolone therapy. Clin Neurol Neurosurg 106:139–141

    Article  PubMed  Google Scholar 

  5. Pouwels S, Boer A, Javaid MK, Jones DH, Verschuuren J, Cooper C, Leufkens HG, Vries F (2012) Fracture rate in patients with myasthenia gravis: the general practice research database. Osteoporos Int 24(2):467–476

    Article  PubMed  PubMed Central  Google Scholar 

  6. Konno S, Suzuki S, Masuda M, Nagane Y, Tsuda E, Murai H, Imai T, Fujioka T, Suzuki N, Utsugisawa K (2015) Association between glucocorticoid-induced osteoporosis and myasthenia gravis: a cross-sectional study. PLoS One 10:1–7

    Google Scholar 

  7. Maricic M, Gluck O (2004) Densitometry in glucocorticoid-induced osteoporosis. J Clin Densitom 7:359–363

    Article  PubMed  Google Scholar 

  8. Gifre L, Ruiz-Gaspà S, Monegal A, Nomdedeu B, Filella X, Guañabens N, Peris P (2013) Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone 57:272–276

    Article  CAS  PubMed  Google Scholar 

  9. Jaretzki A, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JG, Penn AS (2000) Myasthenia gravis. Recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 55:1–14

    Article  Google Scholar 

  10. Burns TM, Conaway M, Sanders DB (2010) The MG composite. A valid and reliable outcome measure for myasthenia gravis. Neurology 74:1434–1440

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D (1997) Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int 7:390–406

    Article  CAS  PubMed  Google Scholar 

  12. Yeh JH, Chen HJ, Chen YK, Chiu HC, Kao CH (2014) Increased risk of osteoporosis in patients with myasthenia gravis. A population-based cohort study. Neurology 83:1–5

    Article  Google Scholar 

  13. Buehring B, Viswanathan R, Binkley N, Busse W (2013) Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol 132:1019–1030

    Article  CAS  PubMed  Google Scholar 

  14. Pereira RMR, Carvalho JFC, Paula AP, Zerbini C, Domiciano DS, Gonçalves H, Danowski JS, Neto JFM, Mendonça LMC, Bezerra MC, Terreri MT, Imamura M, Weingrill P, Plapler PG, Radominski S, Tourinho T, Szejnfeld VL, Andrada NC (2012) Diretrizes para prevenção e tratamento da osteoporose induzida por glicocorticoide. Rev Bras Reumatol 52:569–593

    Google Scholar 

  15. Gudbjornsson B, Juliusson UI, Gudbjornsson FV (2002) Prevalence of long-term steroid treatment and the frequency of decision making to prevent steroid induced osteoporosis in daily clinical practice. Ann Rheum Dis 61:32–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mitra R (2011) Adverse effects of corticosteroids on bone metabolism: a review. Am J Phy Med Rehabil 3:466–471

    Google Scholar 

  17. van Staa TP, Leufkens HGM, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13:777–787

    Article  PubMed  Google Scholar 

  18. Holick FH (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  19. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B (2004) Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 116:634–639

    Article  CAS  PubMed  Google Scholar 

  20. D’Amelio P, Grimaldi A, Bernabei P (2006) Immune system and bone metabolism: does thymectomy influence postmenopausal bone loss in humans? Bone 39:658–665

    Article  PubMed  Google Scholar 

  21. Ahmed HH, Morcos NYS, Eskander EF, Seoudi DMS, Shalby AB (2012) Potential role of leptin against glucocorticoid-induced secondary osteoporosis in adult female rats. Eur Rev Med Pharmacol Sci 16:1446–1452

    CAS  PubMed  Google Scholar 

  22. Shiguang L, Gupta QA, Darryl L (2007) Emerging role of fibroblast growth factor 23 in a bone–kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens 16:329–335

    Article  Google Scholar 

  23. Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibel MJ (2014) Glucocorticoids and bone: local effects and systemic implications. Trends Endocrinol Metabol 25:197–211

    Article  CAS  Google Scholar 

  24. Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A et al (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281:11846–11855

    Article  CAS  PubMed  Google Scholar 

  25. Franchimont N, Wertz S, Malaise M (2005) Interleukin-6: an osteotropic factor influencing bone formation? Bone 37:601–606

    Article  CAS  PubMed  Google Scholar 

  26. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303

    CAS  PubMed  Google Scholar 

  27. Carr AS, Cardwell CR, McCarron PO, McConville K (2010) A systematic review of population based epidemiological studies in myasthenia gravis. BMC Neurol 10:1–9

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Brazilian government funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lucio Teixeira.

Ethics declarations

All subjects provided written informed consent before admission to the study. The Research Ethics Committee of the Universidade Federal de Minas Gerais, Brazil, approved this study (protocol number: CAAE-19045413.0.0000.5149).

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braz, N.F.T., Rocha, N.P., Vieira, É.L.M. et al. Negative impact of high cumulative glucocorticoid dose on bone metabolism of patients with myasthenia gravis. Neurol Sci 38, 1405–1413 (2017). https://doi.org/10.1007/s10072-017-2964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-2964-z

Keywords

Navigation