Skip to main content
Log in

Association analysis of four candidate genetic variants with sporadic amyotrophic lateral sclerosis in a Chinese population

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Recently, four single nucleotide polymorphisms (SNPs), including rs2814707 in the 9p21, rs12608932 in the UNC13A gene, rs13048019 in the TIMA1 gene, and rs2228576 in the SCNN1A gene have been reported to be associated with the risk for developing amyotrophic lateral sclerosis (ALS) in Caucasian population. However, this association is not consistent among different studies and yet to be tested in ALS patients in Mainland China. This study included 397 sporadic ALS (SALS) patients and 287 unrelated Chinese healthy controls from Southwest China. Four SNPs listed above were genotyped by using Sequenom’s iPLEX assay. No significant differences in the genotype distributions or minor allele frequencies in all SNPs were found between ALS group and control group, between the spinal-onset group and bulbar-onset group, and between the early-onset group and the late-onset group. Our results suggest that these SNPs are unlikely to be common cause of SALS in Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowland LP, Shneider NA (2001) Amyotrophic Lateral Sclerosis. N Engl J Med 344:1688–1700

    Article  CAS  PubMed  Google Scholar 

  2. Simpson CL, Al-Chalabi A (2006) Amyotrophic lateral sclerosis as a complex genetic disease. Biochim Biophys Acta 1762(11–12):973–985. doi:10.1016/j.bbadis.2006.08.001

    Article  CAS  PubMed  Google Scholar 

  3. Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364(6435):362. doi:10.1038/364362c0

    CAS  PubMed  Google Scholar 

  4. Valdmanis PN, Rouleau GA (2008) Genetics of familial amyotrophic lateral sclerosis. Neurology 70(2):144–152. doi:10.1212/01.wnl.0000296811.19811.db

    Article  PubMed  Google Scholar 

  5. Van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, Clay D, Wood EM, Chen-Plotkin AS, Martinez-Lage M, Steinbart E, McCluskey L, Grossman M, Neumann M, Wu IL, Yang WS, Kalb R, Galasko DR, Montine TJ, Trojanowski JQ, Lee VM, Schellenberg GD, Yu CE (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7(5):409–416. doi:10.1016/S1474-4422(08)70071-1

    Article  PubMed Central  PubMed  Google Scholar 

  6. Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7(9):710–723. doi:10.1038/nrn1971

    Article  CAS  PubMed  Google Scholar 

  7. Fong JC, Karydas AM, Goldman JS (2012) Genetic counseling for FTD/ALS caused by the C9ORF72 hexanucleotide expansion. Alzheimers Res Ther 4(4):27. doi:10.1186/alzrt130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12(3):310–322. doi:10.1016/S1474-4422(13)70036-X

    Article  CAS  PubMed  Google Scholar 

  9. Chio A, Traynor BJ, Lombardo F, Fimognari M, Calvo A, Ghiglione P, Mutani R, Restagno G (2008) Prevalence of SOD1 mutations in the Italian ALS population. Neurology 70(7):533–537. doi:10.1212/01.wnl.0000299187.90432.3f

    Article  CAS  PubMed  Google Scholar 

  10. Factor-Litvak P, Al-Chalabi A, Ascherio A, Bradley W, Chio A, Garruto R, Hardiman O, Kamel F, Kasarskis E, McKee A, Nakano I, Nelson LM, Eisen A (2013) Current pathways for epidemiological research in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14(Suppl 1):33–43. doi:10.3109/21678421.2013.778565

    Article  PubMed  Google Scholar 

  11. Li Y, Rowland C, Schrodi S, Laird W, Tacey K, Ross D, Leong D, Catanese J, Sninsky J, Grupe A (2006) A case-control association study of the 12 single-nucleotide polymorphisms implicated in Parkinson disease by a recent genome scan. Am J Hum Genet 78(6):1090–1092. doi:10.1086/504725 author reply 1092-1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG, Greenway MJ, Bradley DG, Traynor BJ, Hardiman O (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17(5):768–774. doi:10.1093/hmg/ddm361

    Article  CAS  PubMed  Google Scholar 

  13. Dunckley T, Huentelman MJ, Craig DW, Pearson JV, Szelinger S, Joshipura K, Halperin RF, Stamper C, Jensen KR, Letizia D, Hesterlee SE, Pestronk A, Levine T, Bertorini T, Graves MC, Mozaffar T, Jackson CE, Bosch P, McVey A, Dick A, Barohn R, Lomen-Hoerth C, Rosenfeld J, O’Connor DT, Zhang K, Crook R, Ryberg H, Hutton M, Katz J, Simpson EP, Mitsumoto H, Bowser R, Miller RG, Appel SH, Stephan DA (2007) Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med 357(8):775–788. doi:10.1056/NEJMoa070174

    Article  CAS  PubMed  Google Scholar 

  14. Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A, Daube JR, Nance M, Fan C, Kaplan J, Hung WY, McKenna-Yasek D, Haines JL, Pericak-Vance MA, Horvitz HR, Brown RH Jr (2000) Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. JAMA 284(13):1664–1669. doi:http://www.ncbi.nlm.nih.gov/pubmed/11015796

    Article  CAS  PubMed  Google Scholar 

  15. Valdmanis PN, Dupre N, Bouchard JP, Camu W, Salachas F, Meininger V, Strong M, Rouleau GA (2007) Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. Arch Neurol 64(2):240–245. doi:10.1001/archneur.64.2.240

    Article  PubMed  Google Scholar 

  16. Vance C, Al-Chalabi A, Ruddy D, Smith BN, Hu X, Sreedharan J, Siddique T, Schelhaas HJ, Kusters B, Troost D, Baas F, de Jong V, Shaw CE (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain 129(Pt 4):868–876. doi:10.1093/brain/awl030

    Article  PubMed  Google Scholar 

  17. Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai SL, Myllykangas L, Sulkava R, Jansson L, Hernandez DG, Gibbs JR, Nalls MA, Heckerman D, Tienari PJ, Traynor BJ (2010) Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol 9(10):978–985. doi:10.1016/S1474-4422(10)70184-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zikich D, Mezer A, Varoqueaux F, Sheinin A, Junge HJ, Nachliel E, Melamed R, Brose N, Gutman M, Ashery U (2008) Vesicle priming and recruitment by ubMunc13-2 are differentially regulated by calcium and calmodulin. J Neurosci 28(8):1949–1960. doi:10.1523/JNEUROSCI.5096-07.2008

    Article  CAS  PubMed  Google Scholar 

  19. Shatunov A, Mok K, Newhouse S, Weale ME, Smith B, Vance C, Johnson L, Veldink JH, van Es MA, van den Berg LH, Robberecht W, Van Damme P, Hardiman O, Farmer AE, Lewis CM, Butler AW, Abel O, Andersen PM, Fogh I, Silani V, Chio A, Traynor BJ, Melki J, Meininger V, Landers JE, McGuffin P, Glass JD, Pall H, Leigh PN, Hardy J, Brown RH Jr, Powell JF, Orrell RW, Morrison KE, Shaw PJ, Shaw CE, Al-Chalabi A (2010) Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UKand seven other countries: a genome-wide association study. Lancet Neurol 9(10):986–994. doi:10.1016/S1474-4422(10)70197-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. van Es MA, Veldink JH, Saris CG, Blauw HM, van Vught PW, Birve A, Lemmens R, Schelhaas HJ, Groen EJ, Huisman MH, van der Kooi AJ, de Visser M, Dahlberg C, Estrada K, Rivadeneira F, Hofman A, Zwarts MJ, van Doormaal PT, Rujescu D, Strengman E, Giegling I, Muglia P, Tomik B, Slowik A, Uitterlinden AG, Hendrich C, Waibel S, Meyer T, Ludolph AC, Glass JD, Purcell S, Cichon S, Nothen MM, Wichmann HE, Schreiber S, Vermeulen SH, Kiemeney LA, Wokke JH, Cronin S, McLaughlin RL, Hardiman O, Fumoto K, Pasterkamp RJ, Meininger V, Melki J, Leigh PN, Shaw CE, Landers JE, Al-Chalabi A, Brown RH Jr, Robberecht W, Andersen PM, Ophoff RA, van den Berg LH (2009) Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet 41(10):1083–1087. doi:10.1038/ng.442

    Article  PubMed  Google Scholar 

  21. Diekstra FP, van Vught PW, van Rheenen W, Koppers M, Pasterkamp RJ, van Es MA, Schelhaas HJ, de Visser M, Robberecht W, Van Damme P, Andersen PM, van den Berg LH, Veldink JH (2012) UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiol Aging 33(3):630.e633–630.e638. doi:10.1016/j.neurobiolaging.2011.10.029

    Article  Google Scholar 

  22. Iida A, Takahashi A, Deng M, Zhang Y, Wang J, Atsuta N, Tanaka F, Kamei T, Sano M, Oshima S, Tokuda T, Morita M, Akimoto C, Nakajima M, Kubo M, Kamatani N, Nakano I, Sobue G, Nakamura Y, Fan D, Ikegawa S (2011) Replication analysis of SNPs on 9p21.2 and 19p13.3 with amyotrophic lateral sclerosis in East Asians. Neurobiol Aging 32(4):757.e713–757.e754. doi:10.1016/j.neurobiolaging.2010.12.011

    Article  Google Scholar 

  23. Penco S, Buscema M, Patrosso MC, Marocchi A, Grossi E (2008) New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background. BMC Bioinformatics 9:254. doi:10.1186/1471-2105-9-254

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10(1):75–82. doi:10.1016/s1474-4422(10)70224-6

    Article  CAS  PubMed  Google Scholar 

  25. Irvin MR, Lynch AI, Kabagambe EK, Tiwari HK, Barzilay JI, Eckfeldt JH, Boerwinkle E, Davis BR, Ford CE, Arnett DK (2010) Pharmacogenetic association of hypertension candidate genes with fasting glucose in the GenHAT Study. J Hypertens 28(10):2076–2083. doi:10.1097/HJH.0b013e32833c7a4d

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zou ZY, Li XG, Liu MS, Cui LY (2013) Screening for C9orf72 repeat expansions in Chinese amyotrophic lateral sclerosis patients. Neurobiol Aging 34(6):1710.e1715–1710.e1716. doi:10.1016/j.neurobiolaging.2012.11.018

    Google Scholar 

  27. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Mot Neuron Disord 1:293–299

    Article  CAS  Google Scholar 

  28. Fuglsang-Frederiksen A (2008) Diagnostic criteria for amyotrophic lateral sclerosis (ALS). Clin Neurophysiol 119(3):495–496. doi:10.1016/j.clinph.2007.10.020

    Article  PubMed  Google Scholar 

  29. Zhang SS, Fang DF, Hu XH, Burgunder JM, Chen XP, Zhang YW, Shang HF (2010) Clinical feature and DYT1 mutation screening in primary dystonia patients from South-West China. Eur J Neurol 17(6):846–851. doi:10.1111/j.1468-1331.2009.02944.x

    Article  PubMed  Google Scholar 

  30. Fang DF, Zhang SS, Guo XY, Zeng Y, Yang Y, Zhou D, Shang HF (2009) Clinical and genetic features of patients with sporadic amyotrophic lateral sclerosis in south-west China. Amyotroph Lateral Scler 10(5–6):350–354

    Article  CAS  PubMed  Google Scholar 

  31. Rollinson S, Mead S, Snowden J, Richardson A, Rohrer J, Halliwell N, Usher S, Neary D, Mann D, Hardy J, Pickering-Brown S (2011) Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis. Neurobiol Aging 32(4):758.e751–758.e757. doi:10.1016/j.neurobiolaging.2010.12.005

    Google Scholar 

  32. Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, Janssens J, Bettens K, Van Cauwenberghe C, Pereson S, Engelborghs S, Sieben A, De Jonghe P, Vandenberghe R, Santens P, De Bleecker J, Maes G, Baumer V, Dillen L, Joris G, Cuijt I, Corsmit E, Elinck E, Van Dongen J, Vermeulen S, Van den Broeck M, Vaerenberg C, Mattheijssens M, Peeters K, Robberecht W, Cras P, Martin JJ, De Deyn PP, Cruts M, Van Broeckhoven C (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65. doi:10.1016/S1474-4422(11)70261-7

    Article  CAS  PubMed  Google Scholar 

  33. Mok K, Traynor BJ, Schymick J, Tienari PJ, Laaksovirta H, Peuralinna T, Myllykangas L, Chio A, Shatunov A, Boeve BF, Boxer AL, DeJesus-Hernandez M, Mackenzie IR, Waite A, Williams N, Morris HR, Simon-Sanchez J, van Swieten JC, Heutink P, Restagno G, Mora G, Morrison KE, Shaw PJ, Rollinson PS, Al-Chalabi A, Rademakers R, Pickering-Brown S, Orrell RW, Nalls MA, Hardy J (2012) Chromosome 9 ALS and FTD locus is probably derived from a single founder. Neurobiol Aging 33(1):209.e203–209.e208. doi:10.1016/j.neurobiolaging.2011.08.005

    Article  Google Scholar 

  34. Chio A, Mora G, Restagno G, Brunetti M, Ossola I, Barberis M, Ferrucci L, Canosa A, Manera U, Moglia C, Fuda G, Traynor BJ, Calvo A (2013) UNC13A influences survival in Italian amyotrophic lateral sclerosis patients: a population-based study. Neurobiol Aging 34(1):357.e351–357.e355. doi:10.1016/j.neurobiolaging.2012.07.016

    Article  Google Scholar 

  35. Ahmeti KB, Ajroud-Driss S, Al-Chalabi A, Andersen PM, Armstrong J, Birve A, Blauw HM, Brown RH, Bruijn L, Chen W, Chio A, Comeau MC, Cronin S, Diekstra FP, Soraya Gkazi A, Glass JD, Grab JD, Groen EJ, Haines JL, Hardiman O, Heller S, Huang J, Hung WY, Jaworski JM, Jones A, Khan H, Landers JE, Langefeld CD, Leigh PN, Marion MC, McLaughlin RL, Meininger V, Melki J, Miller JW, Mora G, Pericak-Vance MA, Rampersaud E, Robberecht W, Russell LP, Salachas F, Saris CG, Shatunov A, Shaw CE, Siddique N, Siddique T, Smith BN, Sufit R, Topp S, Traynor BJ, Vance C, van Damme P, van den Berg LH, van Es MA, van Vught PW, Veldink JH, Yang Y, Zheng JG (2013) Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiol Aging 34(1):357.e7–357.e19. doi:10.1016/j.neurobiolaging.2012.07.017

    Google Scholar 

  36. Deng M, Wei L, Zuo X, Tian Y, Xie F, Hu P, Zhu C, Yu F, Meng Y, Wang H, Zhang F, Ma H, Ye R, Cheng H, Du J, Dong W, Zhou S, Wang C, Wang Y, Wang J, Chen X, Sun Z, Zhou N, Jiang Y, Liu X, Li X, Zhang N, Liu N, Guan Y, Han Y, Lv X, Fu Y, Yu H, Xi C, Xie D, Zhao Q, Xie P, Wang X, Zhang Z, Shen L, Cui Y, Yin X, Liang B, Zheng X, Lee TM, Chen G, Zhou F, Veldink JH, Robberecht W, Landers JE, Andersen PM, Al-Chalabi A, Shaw C, Liu C, Tang B, Xiao S, Robertson J, van den Berg LH, Sun L, Liu J, Yang S, Ju X, Wang K, Zhang X (2013) Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis. Nat Genet 45(6):697–700. doi:10.1038/ng.2627

    Article  CAS  PubMed  Google Scholar 

  37. Harraz MM, Marden JJ, Zhou W, Zhang Y, Williams A, Sharov VS, Nelson K, Luo M, Paulson H, Schoneich C, Engelhardt JF (2008) SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 118(2):659–670. doi:10.1172/JCI34060

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wright AF, Carothers AD, Pirastu M (1999) Population choice in mapping genes for complex diseases. Nat Genet 23(4):397–404. doi:10.1038/70501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patients and their families for their participation in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifang Shang.

Additional information

X. Chen and R. Huang these authors have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Huang, R., Chen, Y. et al. Association analysis of four candidate genetic variants with sporadic amyotrophic lateral sclerosis in a Chinese population. Neurol Sci 35, 1089–1095 (2014). https://doi.org/10.1007/s10072-014-1656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-014-1656-1

Keywords

Navigation