Skip to main content

Advertisement

Log in

Curcumin differentially regulates the expression of superoxide dismutase in cerebral cortex and cerebellum of l-thyroxine (T4)-induced hyperthyroid rat brain

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The present investigation was aimed to elucidate the effect of curcumin on lipid peroxidation (LPx) and superoxide dismutase (SOD) in l-thyroxine (T4)-induced oxidative stress in cerebral cortex and cerebellum of rat brain. Elevated level of LPx in cerebral cortex declined to control level on supplementation of curcumin to T4-treated rats. On the other hand, unaltered LPx level in T4-treated rats showed a significantly decreased level of LPx on supplementation of curcumin. The increased activity of SOD and translated products of SOD1 and SOD2 in cerebral cortex of T4-treated rats was ameliorated on supplementation of curcumin. The decreased activity of SOD and protein expression of SOD1 in cerebellum of T4-treated rats were ameliorated on administration of curcumin. On the other hand, SOD2 expression was not influenced either by T4-treated or by curcumin supplementation to T4-treated rats. Results of the present investigation reveal that the regulation of expression of SOD by curcumin in different regions (cerebral cortex and cerebellum) of rat brain is different under hyperthyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson GW (2001) Thyroid hormones and the brain. Front Neuroendocrinol 22:1–17

    Article  PubMed  CAS  Google Scholar 

  2. Guerrero A, Pamplona R, Porter-Otin M, Barja G, Lopez-Torres M (1999) Effect of thyroid status on lipid composition and peroxidation in the mouse liver. Free Radic Biol Med 26:73–80

    Article  PubMed  CAS  Google Scholar 

  3. Cadenas E, Davis KJA (2000) Mitochondria free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    Article  PubMed  CAS  Google Scholar 

  4. Halliwell B, Gutteridge JMC (2001) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  5. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  PubMed  CAS  Google Scholar 

  6. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M (2005) Chemoprotective and therapeutic effects of curcumin. Cancer Lett 223:181–190

    Article  PubMed  CAS  Google Scholar 

  7. Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2:131–136

    Article  PubMed  CAS  Google Scholar 

  8. Subudhi U, Das K, Paital B, Bhanja S, Chainy GBN (2008) Alleviation of enhanced oxidative stress and oxygen consumption of l-thyroxine induced hyperthyroid rat liver mitochondria by vitamin E and curcumin. Chem Biol Interact 173:105–114

    Article  PubMed  CAS  Google Scholar 

  9. Jena S, Chainy GBN (2011) Regulation of expression of antioxidant enzymes by vitamin E and curcumin in l-thyroxine induced oxidative stress in rat renal cortex. Mol Biol Rep 38:1047–1054. doi:10.1007/s11033-010-0201-4

    Article  PubMed  CAS  Google Scholar 

  10. Reddy AC, Lokesh BR (1996) Effect of curcumin and eugenol on iron-induced hepatic toxicity in rats. Toxicology 107:39–45

    Article  PubMed  CAS  Google Scholar 

  11. Sahoo DK, Roy A, Chainy GBN (2008) Protective effects of vitamin E and curmin on l-thyroxine-induced rat testicular oxidative stress. Chem Biol Interact 176:121–128

    Article  PubMed  CAS  Google Scholar 

  12. Ladenson PW, Kieffer JD, Farewell AP, Ridgway C (1986) Modulation of myocardial l-triidothyronine receptors in normal hypothyroid and hyperthyroid rats. Metabolism 35:5–12

    Article  PubMed  CAS  Google Scholar 

  13. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 377:239–242

    Google Scholar 

  14. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:352–358

    Article  Google Scholar 

  15. Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation of superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  16. Gomes FC, Lima FR, Trentin AG, Moura Neto V (2001) Thyroid hormone role in nervous system morphogenesis. Prog Brain Res 132:41–50

    Article  PubMed  CAS  Google Scholar 

  17. Heisenberg CP, Thoenen H, Lindholm D (1992) Tri-iodothyronine regulates survival and differentiation of rat cerebellar granule neurons. Neuroreport 3:685–688

    Article  PubMed  CAS  Google Scholar 

  18. König S, Moura Neto V (2002) Thyroid hormone actions on neural cells. Cell Mol Neurobiol 22:517–544

    Article  PubMed  Google Scholar 

  19. Müller B, Zulewski H, Huber P, Ratcliffe JG, Staub JJ (1995) Impaired action of thyroid hormone associated with smoking in women with hypothyroidism. N Engl J Med 333:964–969

    Article  PubMed  Google Scholar 

  20. Miranda S, Opazo C, Larrondo LF, Munoz FJ, Ruiz F, Leighton F, Inestrosa NC (2000) The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog Neurobiol 62:633–648

    Article  PubMed  CAS  Google Scholar 

  21. Mogulkoc R, Baltaci AK, Aydin L, Oztekin E, Sivrikaya A (2005) Pinealectomy inhibits antioxidant system in rats with hyperthyroidism. Neuro Endocrinol Lett 26:795–798

    PubMed  CAS  Google Scholar 

  22. Mogulkoc R, Baltaci AK, Oztekin E, Aydin L, Sivrikaya A (2006) Melatonin prevents oxidant damage in various tissues of rats with hyperthyroidism. Life Sci 13:311–315

    Article  Google Scholar 

  23. Mogulkoc R, Baltaci AK, Oztekin E, Sivrikaya A, Aydin L (2006) Effects of hyperthyroidism induced by l-thyroxin administration on lipid peroxidation in various rat tissues. Acta Biol Hung 57:157–163

    Article  PubMed  CAS  Google Scholar 

  24. Venditti P, Balestrieri M, Di Meo S, De Leo T (1997) Effect of thyroid state on lipid peroxidation, antioxidant defenses, and susceptibility to oxidative stress in rat tissues. J Endocrinol 155:151–157

    Article  PubMed  CAS  Google Scholar 

  25. Das K, Chainy GBN (2004) Thyroid hormone influences antioxidant defense system in adult rat brain. Neurochem Res 29:1755–1766

    Article  PubMed  CAS  Google Scholar 

  26. Jena S, Chainy GBN, Dandapat J (2011) Expression of antioxidant genes in renal cortex of PTU-induced hypothyroid rats: effect of vitamin E and curcumin. Mol Biol Rep. doi:10.1007/s11033-011-0849-4

    Google Scholar 

  27. Jena S, Anand C, Chainy GBN, Dandapat J (2011) Induction of oxidative stress and inhibition of superoxide dismutase expression in rat cerebral cortex and cerebellum by PTU-induced hypothyroidism and its reversal by curcumin. Neurol Sci. doi:10.1007/s10072-011-0853-4

    PubMed  Google Scholar 

  28. Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. Eur J Pharmacol 30:54–62

    Article  Google Scholar 

  29. Iqbal M, Okazaki Y, Okada S (2003) In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipid and DNA damage. Teratog Carcinog Mutagen 1:151–160

    Article  PubMed  Google Scholar 

  30. Fernandez V, Videla LA (1993) Influence of hyperthyroidism on superoxide radical and hydrogen peroxide production by rat liver submitochondrial particles. Free Radic Res Commun 18:329–335

    Article  PubMed  CAS  Google Scholar 

  31. Saisac ZS, Mijalkovic DN, Blagojevic DP, Nikolic AL, Spasic MB, Petrovic VM (2004) Effect of thyroxine on glutathione-dependent antioxidant enzyme activities and glutathione content in the interscapular brown adipose tissue of different maturated rats. Jugoslav Med Biochem 23:367–375

    Article  Google Scholar 

  32. Petrovic VM, Spasic M, Saisac Z, Milic B, Radojicic R (1982) Increase in superoxide dismutase activity induced by thyroid hormones in the brains of neonate and adult rats. Experientia 38:1355–1356

    Article  CAS  Google Scholar 

  33. Das K, Chainy GBN (2001) Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim Biophys Acta 1537:1–13

    Article  PubMed  CAS  Google Scholar 

  34. Shrijeeth P, Oommen OV (2008) Tri-iodothyronine alters superoxide dismutase expression in a teleost anabas testudius. Indian J Biochem Biophy 45:393–398

    Google Scholar 

  35. Subudhi U, Chainy GBN (2010) Expression of hepatic antioxidant genes in l-thyroxine-induced hyperthyroid rats: regulation by vitamin E and curcumin. Chem Biol Interact 183:304–316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Biotechnology (DBT), Government of India. The first author is extremely grateful to the Department of Biotechnology, Government of India for providing the fellowship (Ref. No. DBT-JRF/05-06/123).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanta Jena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jena, S., Dandapat, J. & Chainy, G.B.N. Curcumin differentially regulates the expression of superoxide dismutase in cerebral cortex and cerebellum of l-thyroxine (T4)-induced hyperthyroid rat brain. Neurol Sci 34, 505–510 (2013). https://doi.org/10.1007/s10072-012-1084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1084-z

Keywords

Navigation