Skip to main content
Log in

Threat perception in the chameleon (Chamaeleo chameleon): evidence for lateralized eye use

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Chameleons are arboreal lizards with highly independent, large amplitude eye movements. In response to an approaching threat, a chameleon on a vertical pole moves so as to keep itself away from the threat. In so doing, it shifts between monocular and binocular scanning of the threat and of the environment. We analyzed eye movements in the Common chameleon, Chamaeleo chameleon, during avoidance response for lateralization, that is, asymmetry at the functional/behavioral levels. The chameleons were exposed to a threat, approaching horizontally from clockwise or anti-clockwise directions, and that could be viewed monocularly or binocularly. Our results show three broad patterns of eye use, as determined by durations spent viewing the threat and by frequency of eye shifts. Under binocular viewing, two of the patterns were found to be both side dependent, that is, lateralized and role dependent (“leading” or “following”). However, under monocular viewing, no such lateralization was detected. We discuss these findings in light of the situation not uncommon in vertebrates, of independent eye movements and a high degree of optic nerve decussation and that lateralization may well occur in organisms that are regularly exposed to critical stimuli from all spatial directions. We point to the need of further investigating lateralization at fine behavioral levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Avni O, Baum T, Katzir G, Rivlin E (2010) Recovery of 3D animal motions using cameras and mirrors. Mach Vis Appl 21:879–888

    Article  Google Scholar 

  • Bennis M, Repérant J, Rio J, Ward R (1994) An experimental re-evaluation of the primary visual system of the European Chameleon, Chamaeleo chameleon. Brain Behav Evol 43:173–188

    Article  PubMed  CAS  Google Scholar 

  • Bisazza A, de Santi A (2003) Lateralization of aggression in fish. Behav Brain Res 141:131–136

    Article  PubMed  Google Scholar 

  • Bisazza A, Pignatti R, Vallortigara G (1997a) Detour tests reveal task-and stimulus-specific behavioural lateralization in mosquitofish (Gambusia holbrooki). Behav Brain Res 89:237–242

    Article  PubMed  CAS  Google Scholar 

  • Bisazza A, Pignatti R, Vallortigara G (1997b) Laterality in detour behaviour: interspecific variation in poeciliid fish. Anim Behav 54:1273–1281

    Article  PubMed  Google Scholar 

  • Bisazza A, Rogers LJ, Vallortigara G (1998a) The origins of cerebral asymmetry: a review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neurosci Biobehav Rev 22:411–426

    Article  PubMed  CAS  Google Scholar 

  • Bisazza A, Facchin L, Pignatti R, Vallortigara G (1998b) Lateralization of detour behaviour in poeciliid fish: the effect of species, gender and sexual motivation. Behav Brain Res 91:157–164

    Article  PubMed  CAS  Google Scholar 

  • Bisazza A, de Santi A, Bonso S, Sovrano VA (2002) Frogs and toads in front of a mirror: lateralisation of response to social stimuli in tadpoles of five anuran species. Behav Brain Res 134:417–424

    Article  PubMed  Google Scholar 

  • Bloch S, Rivaud S, Martinoya C (1984) Comparing frontal and lateral viewing in the pigeon. III. Different patterns of eye movements for binocular and monocular fixation. Behav Brain Res 13:173–182

    Article  PubMed  CAS  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley, Hoboken

    Book  Google Scholar 

  • Byrne R, Kuba M, Meisel D (2003) Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim Behav 68:1107–1114

    Article  Google Scholar 

  • Cantalupo C, Bisazza A, Vallortigara G (1995) Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia 33:1637–1646

    Article  PubMed  CAS  Google Scholar 

  • Casey MB, Martino CM (2000) Asymmetrical hatching behaviors influence the development of postnatal laterality in domestic chicks (Gallus gallus). Dev Psychobiol 37:13–24

    Article  PubMed  CAS  Google Scholar 

  • Collett T, Land M (1975) Visual control of flight behaviour in the hoverfly Syrrita pipiens L. J Comp Physiol A 99:1–66

    Article  Google Scholar 

  • Collett T, Zeil J (1998) Places and landmarks: an arthropod perspective. In: Healy S (ed) Spatial representations in animals. Oxford University Press, New York, pp 18–53

    Google Scholar 

  • Coren S (1993) The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: norms for young adults. Bull Psychon Soc 31:1–3

    Google Scholar 

  • Cuadrado M, Martin J, Lopez P (2001) Camouflage and escape decisions in the common chameleon Chamaeleo chamaeleon. Biol J Linn Soc 72:547–554

    Article  Google Scholar 

  • De Santi A, Sovrano V, Bisazza A, Vallortigara G (2001) Mosquitofish display differential left-and right-eye use during mirror image scrutiny and predator inspection responses. Anim Behav 61:305–310

    Article  Google Scholar 

  • Deckel AW (1995) Laterality of aggressive responses in Anolis. J Exp Zool 272:194–200

    Article  Google Scholar 

  • Deckel AW, Jevitts E (1997) Left vs. right-hemisphere regulation of aggressive behaviors in Anolis carolinensis: effects of eye-patching and fluoxetine administration. J Exp Zool 278:9–21

    Article  CAS  Google Scholar 

  • Flanders M (1984) Visually guided head movement in the African chameleon. Vis res 25:935–942

    Article  Google Scholar 

  • Fritches K, Marshall J (2002) Independent and conjugate eye movements during optokinesis in teleost fish. J Exp Biol 205:1241–1252

    Google Scholar 

  • Goldby F, Gamble HJ (1957) The reptilian cerebral hemispheres. Biol Rev 32:383–420

    Article  Google Scholar 

  • Güntürkün O, Böhringer PG (1987) Lateralization reversal after intertectal commissurotomy in the pigeon. Brain Res 408:1–5

    Article  PubMed  Google Scholar 

  • Harkness L (1977) Chameleons use accommodation cues to judge distance. Nature 267:346–349

    Article  PubMed  CAS  Google Scholar 

  • Healy S (1998) Spatial representations in animals. Oxford University Press, New York

    Google Scholar 

  • Heatwole H (1968) Relationship of escape behavior and camouflage in anoline lizards. Copeia 1968:109–113

    Article  Google Scholar 

  • Hews DK, Worthington RA (2000) Fighting from the right side of the brain: left visual field preference during aggression in free-ranging male tree lizards (Urosaurus ornatus). Brain Behav Evol 58:356–361

    Article  Google Scholar 

  • Hews DK, Castellano M, Hara E (2004) Aggression in females is also lateralized: left-eye bias during aggressive courtship rejection in lizards. Anim Behav 68:1201–1207

    Article  Google Scholar 

  • Hopkins WD, Bard K, Jones A, Bales S (1993) Chimpanzee hand preference in throwing and infant cradling: implications for the origin of human handedness. Curr Anthropol 34:786–790

    Article  Google Scholar 

  • Izawa EI, Kusayama T, Watanabe S (2005) Foot-use laterality in the Japanese jungle crow (Corvus macrorhynchos). Behav Process 69:357–362

    Article  Google Scholar 

  • Jeffery G, Erskine L (2005) Variations in the architecture and development of the vertebrate optic chiasm. Prog Retin Eye Res 24:721–753

    Article  PubMed  Google Scholar 

  • Land M (1999) Why animals move their eyes. J Comp Physiol A 185:341–352

    Article  PubMed  CAS  Google Scholar 

  • Land M, Nilsson D (2001) Animal eyes. Oxford University Press, New York

    Google Scholar 

  • Lippolis G, Bisazza A, Rogers LJ, Vallortigara G (2002) Lateralisation of predator avoidance responses in three species of toads. Laterality 7:163–183

    Article  PubMed  Google Scholar 

  • Malashichev YB (2002) Asymmetries in amphibians: a review of morphology and behaviour. Laterality 7:197–217

    Article  PubMed  Google Scholar 

  • Malashichev YB, Wassersug RJ (2004) Left and right in the amphibian world: which way to develop and where to turn? BioEssays 26:512–522

    Article  PubMed  Google Scholar 

  • Marchant L, McGrew W (1998) Human handedness: an ethological perspective. Hum Evol 13:221–228

    Article  Google Scholar 

  • Nottebohm F (1971) Neural lateralization of vocal control in a passerine bird. I. Song. J Exp Zool 177:229–261

    Article  PubMed  CAS  Google Scholar 

  • Ott M (2001) Chameleons have independent eye movements but synchronise both eyes during saccadic prey tracking. Exp Brain Res 139:173–179

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Schaeffel F, Kirmse W (1998) Binocular vision and accommodation in prey-catching chameleons. J Comp Physiol A 182:319–330

    Article  Google Scholar 

  • Parsons C, Rogers L (1993) Role of the tectal and posterior commissures in lateralization of the avian brain. Behav Brain Res 54:153–164

    Article  PubMed  CAS  Google Scholar 

  • Pearson R (1972) The avian brain. Academic Press, London

    Google Scholar 

  • Pettigrew JD, Collin SP, Ott M (1999) Convergence of specialised behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia). Curr Biol 9:421–424

    Article  PubMed  CAS  Google Scholar 

  • Robins A, Rogers LJ (2006a) Complementary and lateralized forms of processing in Bufo marinus for novel and familiar prey. Neurobiol Learn Mem 86:214–227

    Article  PubMed  Google Scholar 

  • Robins A, Rogers LJ (2006b) Lateralized visual and motor responses in the green tree frog, Litoria caerulea. Anim Behav 72:843–852

    Article  Google Scholar 

  • Robins A, Lipollis G, Bisazza A, Vallortigara G, Rogers LJ (1998) Lateralized agonistic responses and hindlimb use in toads. Anim Behav 56:875–881

    Article  PubMed  Google Scholar 

  • Robins A, Chen P, Beazley LD, Dunlop SA (2005) Lateralized predatory responses in the ornate dragon lizard (Ctenophorus ornatus). NeuroReport 16:849

    Article  PubMed  Google Scholar 

  • Rogers LJ (1990) Light input and the reversal of functional lateralization in the chicken brain. Behav Brain Res 38:211–221

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73:236–253

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ (2002a) Advantages and disadvantages of lateralization. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. Cambridge University Press, Cambridge, pp 126–153

    Chapter  Google Scholar 

  • Rogers LJ (2002b) Lateralised brain function in anurans: comparison to lateralisation in other vertebrates. Laterality 7:219–239

    Article  PubMed  Google Scholar 

  • Rogers LJ (2008) Development and function of lateralization in the avian brain. Brain Res Bull 76:235–244

    Article  PubMed  Google Scholar 

  • Rogers LJ, Andrew RJ (2002) Comparative vertebrate lateralization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rogers L, Deng C (1999) Light experience and lateralization of the two visual pathways in the chick. Behav Brain Res 98:277–287

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ, Vallortigara G (2008) From antenna to antenna: lateral shift of olfactory memory recall by honeybees. PLoS ONE 3(6):e2340

    Article  PubMed  Google Scholar 

  • Rogers LJ, Zappia JV, Bullock SP (1985) Testosterone and eye-brain asymmetry for copulation in chickens. Cell Mol Life Sci 41:1447–1449

    Article  CAS  Google Scholar 

  • Rogers LJ, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. Proc R Soc Lond B 271:S420

    Article  Google Scholar 

  • Shanklin WM (1930) The central nervous system of Chameleon vulgaris. Acta Zool 11:425–490

    Article  Google Scholar 

  • Sugiyama Y, Fushimi T, Sakura O, Matsuzawa T (1993) Hand preference and tool use in wild chimpanzees. Primates 34:151–159

    Article  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589

    PubMed  Google Scholar 

  • Vallortigara G, Rogers LJ, Bisazza A, Lippolis G, Robins A (1998) Complementary right and left hemifield use for predatory and agonistic behaviour in toads. NeuroReport 9:3341

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Regolin L, Pagni P (1999) Detour behaviour, imprinting and visual lateralization in the domestic chick. Cogn Brain Res 7:307–320

    Article  CAS  Google Scholar 

  • Vallortigara G, Cozzutti C, Tommasi L, Rogers LJ (2001) How birds use their eyes: opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick. Curr Biol 11:29–33

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Chiandetti C, Sorvano V (2010) Brain asymmetry (animal). WIREs Cogn Sci 2:146–157

    Article  Google Scholar 

  • Volkmann J, Schnitzler A, Witte O, Freund HJ (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149

    Google Scholar 

  • Williams H, Crane LA, Hale TK, Esposito MA, Nottebohm F (1992) Right-side dominance for song control in the zebra finch. J Neurobiol 23:1006–1020

    Article  PubMed  CAS  Google Scholar 

  • Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

    Article  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to Yossi Baydatch for initiating the chameleon research. We thank Keren Or-Chen and Ido Izhaki for statistical advice. Nimrod Peleg, Yaara David, Oded Yeruhami and Yuval Bahat were most helpful in providing the computer analysis software. Three anonymous referees and Tova Katzir, Roni Katzir, Tamer Keasar and Simcha Lev-Yadun provided most useful comments. The research was generously funded by the Israel Academy of Sciences and Humanities—Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avichai Lustig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lustig, A., Keter-Katz, H. & Katzir, G. Threat perception in the chameleon (Chamaeleo chameleon): evidence for lateralized eye use. Anim Cogn 15, 609–621 (2012). https://doi.org/10.1007/s10071-012-0489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0489-7

Keywords

Navigation