Skip to main content
Log in

Mechanism of gastrointestinal adaptability and antioxidant function of infant-derived Lactobacillus plantarum BF_15 through genomics

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum is an essential probiotic in the human gastrointestinal tract. L. plantarum BF_15, a functional probiotic isolated from the feces of breast-fed infants, has been reported in many in vitro and in vivo studies with strong gastrointestinal adaptability and outstanding anti-oxidative activities. Therefore, the whole genome of L. plantarum BF_15 was sequenced. Several genes, encoding the gastrointestinal adaptability-related proteins, were identified, including genes related to gastrointestinal environment-induced stress resistance, adhesive performance, and ability to transport and metabolize resistant starch and oligosaccharides. Genes related to alleviating oxidative stress were also found. Further functional verification was carried out by RT-qPCR on the 10 and 12 key adhesion and antioxidant genes. Overall, this study might provide a critical basis for L. plantarum BF_15 as a potential candidate for probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker JL, Derr AM, Karuppaiah K, MacGilvray ME, Kajfasz JK, Faustoferri RC, Rivera-Ramos I, Bitoun JP, Lemos JA, Wen ZT, Quivey RG Jr. Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD+ levels. Journal of Bacteriology. 196: 2166-2177 (2014)

    Article  CAS  Google Scholar 

  • Chen L, Gu Q, Li P, Chen S, Li Y. Genomic analysis of Lactobacillus reuteri WHH1689 reveals its probiotic properties and stress resistance. Food Science & Nutrition. 7: 844-857 (2019)

    Article  CAS  Google Scholar 

  • Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 5: e11147 (2010)

    Article  Google Scholar 

  • Gao Y, Liu Y, Sun M, Zhang H, Mu G, Tuo Y. Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. Journal of Dairy Science. 103: 5916-5930 (2020)

    Article  CAS  Google Scholar 

  • Guo Q, Li S, Xie Y, Zhang Q, Liu M, Xu Z, Sun H, Yang Y. The NAD(+)-dependent deacetylase, Bifidobacterium longum Sir2 in response to oxidative stress by deacetylating SigH (σH) and FOXO3a in Bifidobacterium longum and HEK293T cell respectively. Free Radical Biology & Medicine. 108: 929-939 (2017)

    Article  CAS  Google Scholar 

  • Huang G, Pan H, Zhu Z, Li Q. The complete genome sequence of Bifidobacterium longum LTBL16, a potential probiotic strain from healthy centenarians with strong antioxidant activity. Genomics. 112: 769-773 (2020)

    Article  CAS  Google Scholar 

  • Jia FF, Zhang LJ, Pang XH, Gu XX, Abdelazez A, Liang Y, Sun SR, Meng XC. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Genomics. 109: 432–437 (2017)

  • Jia FF, Zheng HQ, Sun SR, Pang XH, Liang Y, Shang JC, Zhu ZT, Meng XC. Role of luxS in Stress Tolerance and Adhesion Ability in Lactobacillus plantarum KLDS1.0391. BioMed Research International. 2018: 4506829 (2018)

  • Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the Natlonal Academy of Sciences of the United States of America. 105: 15064-15069 (2008)

    Article  CAS  Google Scholar 

  • Kainulainen V, Loimaranta V, Pekkala A, Edelman S, Antikainen J, Kylväjä R, Laaksonen M, Laakkonen L, Finne J, Korhonen TK. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. Journal of Bacteriology. 194: 2509-2519 (2012)

    Article  CAS  Google Scholar 

  • Kinoshita H, Wakahara N, Watanabe M, Kawasaki T, Matsuo H, Kawai Y, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T. Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA 318 recognizes human A and B blood group antigens. Research in Microbiology. 159: 685-691 (2008a)

    Article  CAS  Google Scholar 

  • Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, Watanabe M, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T. Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. Journal of Applied Microbiology. 104: 1667-1674 (2008b)

    Article  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ. Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America. 100: 1990-1995 (2003)

    Article  CAS  Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research. 27: 722-736 (2017)

    Article  CAS  Google Scholar 

  • Li L, Xu Z, Zhou Y, Li T, Sun L, Chen H, Zhou R. Analysis on Actinobacillus pleuropneumoniae LuxS regulated genes reveals pleiotropic roles of LuxS/AI-2 on biofilm formation, adhesion ability and iron metabolism. Microbial Pathogenesis. 50: 293-302 (2011)

    Article  CAS  Google Scholar 

  • Li P, Gu Q. Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin. Journal of Biotechnology. 229: 1-2 (2016)

    Article  CAS  Google Scholar 

  • Li P, Li X, Gu Q, Lou XY, Zhang XM, Song DF, Zhang C. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles. Journal of Zhejiang University-SCIENCE B. 17: 569-579 (2016)

    Article  CAS  Google Scholar 

  • Liu CJ, Wang R, Gong FM, Liu XF, Zheng HJ, Luo YY, Li XR. Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean. Genomics. 106: 404-411 (2015)

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 402-408 (2001)

    Article  CAS  Google Scholar 

  • Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, Gillet B, Kleerebezem M, van Hijum SA, Leulier F. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environmental Microbiology. 18: 4974-4989 (2016)

    Article  CAS  Google Scholar 

  • Mehra Y, Viswanathan P. High-quality whole-genome sequence analysis of Lactobacillus paragasseri UBLG-36 reveals oxalate-degrading potential of the strain. PLoS One. 16: e0260116 (2021)

    Article  CAS  Google Scholar 

  • Nishiyama K, Sugiyama M, Mukai T. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin. Microorganisms. 4 (2016)

  • Ramiah K, van Reenen CA, Dicks LM. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR. International Joural of Food Microbiology. 116: 405-409 (2007)

    Article  CAS  Google Scholar 

  • Suez J, Zmora N, Elinav E. Probiotics in the next-generation sequencing era. Gut Microbes. 11: 77-93 (2020)

    Article  CAS  Google Scholar 

  • Sun Z, Harris H, McCann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF, Liu W, Song Y, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O'Sullivan O, Ritari J, Douillard FP, Paul Ross R, Yang R, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui Y, Zhang H, O'Toole PW. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications. 6: 8322 (2015)

    Article  CAS  Google Scholar 

  • Tang W, Xing Z, Li C, Wang J, Wang Y. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chemistry. 221: 1642-1649 (2017)

    Article  CAS  Google Scholar 

  • Valeriano VDV, Oh JK, Bagon BB, Kim H, Kang DK. Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation. Genomics. 111: 24-33 (2019)

    Article  CAS  Google Scholar 

  • Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, De Weirdt R, Kerckhof FM, Van de Wiele T. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME Journal. 7: 949-961 (2013)

    Article  Google Scholar 

  • Wang Y, Chen C, Ai L, Zhou F, Zhou Z, Wang L, Zhang H, Chen W, Guo B. Complete genome sequence of the probiotic Lactobacillus plantarum ST-III. Journal of Bacteriology. 193: 313-314 (2011)

    Article  CAS  Google Scholar 

  • Wang Z, Zhang Y, Wang L, Wei J, Liu K, Shao D, Li B, Liu L, Widén F, Ma Z, Qiu Y. Comparative genomic analysis of Bordetella bronchiseptica isolates from the lungs of pigs with porcine respiratory disease complex (PRDC). Infection, Genetics and Evolution. 81: 104258 (2020)

  • Waśko A, Polak-Berecka M, Paduch R, Jóźwiak K. The effect of moonlighting proteins on the adhesion and aggregation ability of Lactobacillus helveticus. Anaerobe. 30: 161-168 (2014)

    Article  Google Scholar 

  • Watanabe M, van der Veen S, Nakajima H, Abee T. Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1. Microbiology. 158: 293-300 (2012)

    Article  CAS  Google Scholar 

  • Ye K, Li P, Gu Q. Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics. Genomics. 112: 3142-3149 (2020)

    Article  CAS  Google Scholar 

  • Zhang N, Li C, Niu Z, Kang H, Wang M, Zhang B, Tian H. Colonization and immunoregulation of Lactobacillus plantarum BF_15, a novel probiotic strain from the feces of breast-fed infants. Food & Function. 11: 3156-3166 (2020)

    Article  CAS  Google Scholar 

  • Zhang ZY, Liu C, Zhu YZ, Wei YX, Tian F, Zhao GP, Guo XK. Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. International Journal of Food Microbiology. 153: 166-170 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Key Research and Development Program of Hebei Province (Grant No. 19227134D, 20327112D), the Science and Technology Research Projects of Colleges and Universities in Hebei Province (Grant No. ZD2021059), the Food Processing Discipline Group of Hebei Agricultural University (Grant No. 2022-08), the Doctoral Fund of Baoding University (Grant No. 2021Z02), and the Research Foundation for the Introduced Talents of Hebei Agricultural University (Grant No. YJ2021035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Li or Hongtao Tian.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, N., Li, D. et al. Mechanism of gastrointestinal adaptability and antioxidant function of infant-derived Lactobacillus plantarum BF_15 through genomics. Food Sci Biotechnol 31, 1451–1462 (2022). https://doi.org/10.1007/s10068-022-01132-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01132-w

Keywords

Navigation