Skip to main content
Log in

Kinetics and modeling for extraction of chrysin from Oroxylum indicum seeds

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Research on extraction of chrysin is crucial for theoretical purposes and for food industrial bioprocesses. Optimization and kinetics of chrysin extraction from seeds of Oroxylum indicum (L.) Vent. were analyzed using agitated solid-liquid extractions with ethanol and water mixtures. The influence of extraction process parameters was investigated. Optimized conditions for chrysin extraction were a 0.2 mole fraction of ethanol as an extraction solvent, a temperature of 318 K, an agitation speed 1,400 rpm, and a solid to solvent ratio of 1:30. The extraction kinetic behavior of chrysin followed first order kinetics. The kinetic expression developed by Spiro and Siddique was used and the model was in agreement with experimental results. The diffusion coefficient ranged from 1.38×10−11 to 19.43×10−11 m2·s−1 and the activation energy for extraction kinetics was 21.85 kJ·mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen LJ, Games DE, Jones J, Kidwell H. Separation and identification of flavonoids in an extract from the seeds of Oroxylum indicum by CCC. J. Liq. Chromatogr. R. T. 26: 1623–1636 (2003)

    Article  CAS  Google Scholar 

  2. Yadav AK, Manika N, Bagchi GD, Gupta MM. Simultaneous determination of flavonoids in Oroxylum indicum by RP-HPLC. Med. Chem. Res. 22: 2222–2227 (2013)

    Article  CAS  Google Scholar 

  3. Yan RY, Cao YY, Chen CY, Dai HQ, Yu SX, Wei JL, Li H, Yang B. Antioxidant flavonoids from the seed of Oroxylum indicum. Fitoterapia 82: 841–848 (2011)

    Article  CAS  Google Scholar 

  4. Chen LJ, Song H, Du QZ, Li JR, Ito Y. Analysis of flavonoids in the extracts from the seeds of Oroxylum indicum using high speed countercurrent chromatography/mass spectrometry. J. Liq. Chromatogr. R. T. 28: 1549–1555 (2005)

    Article  CAS  Google Scholar 

  5. Kruger A, Ganzera M. Oroxylum indicum seeds-Analysis of flavonoids by HPLCMS. J. Pharmaceut. Biomed. 70: 553–556 (2012)

    Article  Google Scholar 

  6. Chen LJ, Games DE, Jones J. Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by high-speed countercurrent chromatography. J. Chromatogr. A 988: 95–105 (2003)

    Article  CAS  Google Scholar 

  7. Yuan Y, Hou WL, Tang MH, Luo HD, Chen LJ, Guan YH, Sutherland IA. Separation of flavonoids from the leaves of Oroxylum indicum by HSCCC. Chromatographia 68: 885–892 (2008)

    Article  CAS  Google Scholar 

  8. Srinivas KS, Aparna AS. High Performance Thin layer chromatographic determination of chrysin in Oroxylum indicum vent. from different geographical regions of India. Chromatographia 9: 313–317 (2012)

    Google Scholar 

  9. Chen LJ, Song H, Lan XQ, Games DE, Sutherland IA. Comparison of high-speed counter-current chromatography instruments for the separation of the extracts of the seeds of Oroxylum indicum. J. Chromatogr. A 1063: 241–245 (2005)

    Article  CAS  Google Scholar 

  10. Jin JH, Chun EH, Hyun JH, Choi SW, Su ST, Kim W, Kim DO, Kim BY, Baik MY. Optimization of hot water extraction and ultra high pressure extraction for deer antler. Food Sci. Biotechnol. 24: 507–512 (2015)

    Article  Google Scholar 

  11. Leal PF, Almeida TS, Prado GHC, Prado JM, Meireles MAA. Extraction kinetics and anethole content of fennel (Foeniculum vulgare) and anise seed (Pimpinella anisum) extracts obtained by Soxhlet, ultrasound, percolation, centrifugation, and steam distillation. Separ. Sci. Technol. 46: 1848–1856 (2011)

    Article  CAS  Google Scholar 

  12. Wang LJ, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Tech. 17: 300–312 (2006)

    Article  CAS  Google Scholar 

  13. Gorden LJ, Scott RL. Enhanced solubility in solvent mixtures. 1. The system phenanthrene cyclohexane methylene iodide. J. Am. Chem. Soc. 74: 4138–4140 (1952)

    Google Scholar 

  14. Chen SN, Xia Q, Li D, Yuan WG, Zhang FB, Zhang GL. Solid-liquid equilibria of nonanedioic acid in binary ethanol plus water solvent mixtures from (292.35 to 345.52) K. J. Chem. Eng. Data 54: 1395–1399 (2009)

    Article  CAS  Google Scholar 

  15. Campos LMAS, Michielin EMZ, Danielski L, Ferreira SRS. Experimental data and modeling the supercritical fluid extraction of marigold (Calendula of ficinalis) oleoresin. J. Supercrit. Fluid. 34: 163–170 (2005)

    Article  CAS  Google Scholar 

  16. Goto M, Roy BC, Kodama A, Hirose T. Modeling supercritical fluid extraction process involving solute-solid interaction. J. Chem. Eng. Jpn. 31: 171–177 (1998)

    Article  CAS  Google Scholar 

  17. Spiro M, Siddique S. Kinetics and equilibria of tea infusion: Kinetics of extraction of theaflavins, thearubigins and caffeine from Koonsong broken pekoe. J. Sci. Food Agr. 32: 1135–1139 (1981)

    Article  CAS  Google Scholar 

  18. Stapley AGF. Modelling the kinetics of tea and coffee infusion. J. Sci. Food Agr. 82: 1661–1671 (2002)

    Article  CAS  Google Scholar 

  19. Spiro M, Jago DS. Kinetics and equilibria of tea infusion. 3. Rotating-disk experiments interpreted by a steady-state model. J. Chem. Soc. Furad. T. 1 78: 295–305 (1982)

    CAS  Google Scholar 

  20. Doymaz I. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transfer 47: 277–285 (2011)

    Article  Google Scholar 

  21. McMinn WAM. Thin-layer modelling of the convective, microwave, microwaveconvective and microwave-vacuum drying of lactose powder. J. Food Eng. 72: 113–123 (2006)

    Article  CAS  Google Scholar 

  22. Togrul IT, Pehlivan D. Modelling of drying kinetics of single apricot. J. Food Eng. 58: 23–32 (2003)

    Article  Google Scholar 

  23. Vetal MD, Lade VG, Rathod VK. Extraction of ursolic acid from Ocimum sanctum leaves: Kinetics and modeling. Food Bioprod. Process. 90: 793–798 (2012)

    Article  CAS  Google Scholar 

  24. Brown HC, Brady JD. Solubility of hydrogen chloride at low temperatures. A measure of the basic properties of aromatic nuclei; p-and s-complex and their role in aromatic substitution. J. Am. Chem. Soc. 74: 3570–3582 (1952)

    CAS  Google Scholar 

  25. Jia DM, Wang LS, Shao XZ, Li CH. Solubility of propanoic acid 3-(hydroxyphenylphosphinyl)-sodium salts in different solvent. Fluid Phase Equilibr. 344: 38–44 (2013)

    Article  CAS  Google Scholar 

  26. Chen SN, Xia Q, Lu LF, Zhang MS, Chen YS, Zhang FB, Zhang GL. Measurement and correlation of solubilities of decanedioic acid in C4-C6 alcohol solvents. J. Chem. Eng. Data 55: 1411–1415 (2010)

    Article  CAS  Google Scholar 

  27. Charpe TW, Rathod VK. Extraction of glycyrrhizic acid from licorice root using ultrasound: Process intensification studies. Chem. Eng. Process. 54: 37–41 (2012)

    Article  CAS  Google Scholar 

  28. Frank TC, Downey JR, Gupta SK. Quickly screen solvents for organic solids. Chem. Eng. Prog. 95: 41–61 (1999)

    CAS  Google Scholar 

  29. Karacabey E, Mazza G. Optimization of solid-liquid extraction of resveratrol and other phenolic compounds from milled grape canes (Vitis vinifera). J. Agr. Food Chem. 56: 6318–6325 (2008)

    Article  CAS  Google Scholar 

  30. Zhou L, Zhang P, Yang G, Lin R, Wang W, Liu T, Zhang L, Zhang J. Solubility of chrysin in ethanol and water mixtures. J. Chem. Eng. Data 59: 2215–2220 (2014)

    Article  CAS  Google Scholar 

  31. Spigno G, de Faveri DM. Antioxidants from grape stalks and marc: Influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng. 78: 793–801 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Jing, T., Zhang, P. et al. Kinetics and modeling for extraction of chrysin from Oroxylum indicum seeds. Food Sci Biotechnol 24, 2045–2050 (2015). https://doi.org/10.1007/s10068-015-0272-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0272-z

Keywords

Navigation