Skip to main content
Log in

Microencapsulation of catechin with high loading and encapsulation efficiencies using soaking methods

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Catechin-loaded calcium alginate microparticles with high encapsulation and loading efficiencies were prepared using two types of soaking methods; swelling and absorption methods. The soaking methods, respectively, showed approximately 2.4× and 21.7× higher encapsulation and loading efficiencies than the conventional method. Compared with the swelling method, the absorption method showed significantly (p<0.05) higher encapsulation and loading efficiencies that were controlled in the range of 10.6-51.6 and 4.9-38.2%, respectively, under different preparation conditions, including alginate viscosity, blank particle quantity, and the catechin concentration. The absorption method also showed better sustained release in simulated gastric and intestinal fluids and a smaller particle size with uniform morphological properties than the swelling method. The absorption method is a promising method for microencapsulation of catechin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim HS, Quon MJ, Kim J. New insights into the mechanisms of polyphenols beyond antioxidant properties; Lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2: 187–195 (2014)

    Article  CAS  Google Scholar 

  2. Clifford MN, van der Hooft JJ, Crozier A. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am. J. Clin. Nutr. 98: 1619S–1630S (2013)

    Article  CAS  Google Scholar 

  3. Lima AC, Sher P, Mano JF. Production methodologies of polymeric and hydrogel particles for drug delivery applications. Expert Opin. Drug Del. 9: 231–248 (2012)

    Article  CAS  Google Scholar 

  4. Fang Z, Bhandari B. Encapsulation of polyphenols-A review. Trends Food Sci. Tech. 21: 510–523 (2010)

    Article  CAS  Google Scholar 

  5. Lertsutthiwong P, Noomun K, Jongaroonngamsang N, Rojsitthisak P, Nimmannit U. Preparation of alginate nanocapsules containing turmeric oil. Carbohyd. Polym. 74: 209–214 (2008)

    Article  CAS  Google Scholar 

  6. Chan AW, Neufeld RJ. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials 30: 6119–6129 (2009)

    Article  CAS  Google Scholar 

  7. Jain D, Bar-Shalom D. Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm. 40: 1576–1584 (2014)

    Article  CAS  Google Scholar 

  8. Li Y, Hu M, Du Y, Xiao H, McClements DJ. Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloid. 25: 122–130 (2011)

    Article  CAS  Google Scholar 

  9. Chandramouli V, Kailasapathy K, Peiris P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Meth. 56: 27–35 (2004)

    Article  CAS  Google Scholar 

  10. Yoo SH, Song YB, Chang PS, Lee HG. Microencapsulation of α-tocopherol using sodium alginate and its controlled release properties. Int. J. Biol. Macromol. 38: 25–30 (2006)

    Article  CAS  Google Scholar 

  11. Sezer A, Akbuga J. Release characteristics of chitosan treated alginate beads: II. Sustained release of a low molecular drug from chitosan treated alginate beads. J. Microencapsul. 16: 687–696 (1999)

    Article  CAS  Google Scholar 

  12. Hassannejad Z, Khosroshahi M, Firouzi M. Fabrication and characterization of magnetoplasmonic liposome carriers. Nanosci. Technol. 1: 1–9 (2014)

    Google Scholar 

  13. Lee J-S, Chung D, Lee HG. Optimization of calcium pectinate gel beads for sustained-release of catechin using response surface methodology. Int. J. Biol. Macromol. 42: 340–347 (2008)

    Article  CAS  Google Scholar 

  14. Lee J-S, Kim EJ, Chung D, Lee HG. Characteristics and antioxidant activity of catechin-loaded calcium pectinate gel beads prepared by internal gelation. Colloid. Surface. B 74: 17–22 (2009)

    Article  CAS  Google Scholar 

  15. Elabbadi A, Jeckelmann N, Haefliger OP, Ouali L. Complexation/encapsulation of green tea polyphenols in mixed calcium carbonate and phosphate microparticles. J. Microencapsul. 28: 1–9 (2011)

    Article  CAS  Google Scholar 

  16. Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Tech. 17: 272–283 (2006)

    Article  CAS  Google Scholar 

  17. Sriamornsak P, Nunthanid J, Cheewatanakornkool K, Manchun S. Effect of drug loading method on drug content and drug release from calcium pectinate gel beads. AAPS PharmSciTech 11: 1315–1319 (2010)

    Article  CAS  Google Scholar 

  18. Tu J, Bolla S, Barr J, Miedema J, Li X, Jasti B. Alginate microparticles prepared by spray-coagulation method: Preparation, drug loading and release characterization. Int. J. Pharm. 303: 171–181 (2005)

    Article  CAS  Google Scholar 

  19. Dalluge JJ, Nelson BC. Determination of tea catechins. J. Chromatogr. A 881: 411–424 (2000)

    Article  CAS  Google Scholar 

  20. Cacace J, Reilly EE, Amann A. Comparison of the dissolution of metaxalone tablets (Skelaxin) using USP apparatus 2 and 3. AAPS PharmSciTech 5: 29–31 (2004)

    Google Scholar 

  21. Lee J-S, Chung D, Lee HG. Preparation and characterization of calcium pectinate gel beads entrapping catechin-loaded liposomes. Int. J. Biol. Macromol. 42: 178–184 (2008)

    Article  CAS  Google Scholar 

  22. Sriamornsak P, Kennedy RA. Effect of a small molecule on diffusion and swelling properties of selected polysaccharide gel beads. Carbohyd. Polym. 79: 219–223 (2010)

    Article  CAS  Google Scholar 

  23. Yamamoto T, Nishimura T, Suzuki T, Tamon H. Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J. Non-Cryst. Solids 288: 46–55 (2001)

    Article  CAS  Google Scholar 

  24. Mukhopadhyay D, Saville D, Tucker IG. Crosslinking of drug-alginate granules. Part 2. Effect of granule preparation and composition on granule properties. Int. J. Pharm. 356: 193–199 (2008)

    Article  CAS  Google Scholar 

  25. Chan LW, Jin Y, Heng PWS. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. Int. J. Pharm. 242: 255–258 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.S., Lee, JS. & Lee, H.G. Microencapsulation of catechin with high loading and encapsulation efficiencies using soaking methods. Food Sci Biotechnol 24, 1735–1739 (2015). https://doi.org/10.1007/s10068-015-0225-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0225-6

Keywords

Navigation