Skip to main content
Log in

Novel bioconversion of sodium glutamate to γ-poly-glutamic acid and γ-amino butyric acid in a mixed fermentation using Bacillus subtilis HA and Lactobacillus plantarum K154

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Both γ-poly-glutamic acid (γ-PGA) and γ-amino butyric acid (GABA) were produced from sodium glutamate in a mixed fermentation. A culture broth was obtained using a defined medium including 3% glutamate and Bacillus subtilis HA for 3 days at 42°C, with 1.20×108 CFU/mL viable cells, a 0.46 Pa·sn consistency index, and a 1.94% mucilage content. In a second fermentation using Lactobacillus plantarum K154 at 37°C for 3 days, 1.29% of the remaining glutamic acid in the viscous culture broth was converted to 0.86% GABA. Glutamic acid in the first culture broth fortified with 5% skim milk was completely converted to GABA. The final co-cultured broth had 0.48% GABA, a 0.294% tyrosine content, and viable cells of 1.06×109 CFU/mL (L. plantarum K154) and 5.42×105 CFU/mL (B. subtilis HA). Serial co-culturing of these two bacteria can provide novel ingredients fortified with γ-PGA, GABA, peptides, and probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schallmey M, Singh A, Ward OP. Development in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1–17 (2004)

    Article  CAS  Google Scholar 

  2. Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299–310 (2004)

    Article  CAS  Google Scholar 

  3. Ho GH, Ho TI, Hsieh KH, Su YC, Lin PY, Yang J. γ-Polyglutamic acid produced by Bacillus subtilis (natto): Structural characteristics, chemical properties and biological functionalities. J. Chin. Chem. Soc. 53: 1363–1384 (2006)

    CAS  Google Scholar 

  4. Bajaj I, Singhal R. Poly (glutamic acid)-an emerging biopolymer of commercial interest. Bioresource Technol. 102: 5551–5561 (2011)

    Article  CAS  Google Scholar 

  5. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. Natural and edible biopolymer poly-gamma-glutamic acid: Synthesis, production and application. Chem. Rec. 5: 352–366 (2005)

    Article  CAS  Google Scholar 

  6. Park C, Chol YH, Shin HJ, Poo H, Song JJ, Kim CJ, Sung MH. Effect of high-molecular-weight poly-γ-glutamic acid from Bacillus subtilis (Chungkookjang) on Ca solubility and intestinal absorption. J. Microbiol. Biotechnol. 15: 855–858 (2005)

    CAS  Google Scholar 

  7. Tanaka T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S. Purification and characterization of poly (gamma-glutamic acid) hydrolase from a filamentous fungus, Myrothecium sp. TM-4222. Biosci. Biotech. Bioch. 57: 2148–2153 (1993)

    Article  CAS  Google Scholar 

  8. Tanaka T, Yaguchi T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S. Screening for microorganism having poly (γ-glutamic acid) endohydrolase activity and the enzyme production by Myrothecium sp. TM-4222. Biosci. Biotech. Bioch. 57: 1809–1810 (1993)

    Article  CAS  Google Scholar 

  9. Jung HW, Kim JE, Seo JH, Lee SP. Physicochemical and antioxidant properties of red ginseng marc fermented by Bacillus subtilis HA with Mugwort powder addition. J. Korean Soc. Food Sci. Nutr. 39: 1391–1398 (2010)

    Article  CAS  Google Scholar 

  10. Son MJ, Son SJ, Lee SP. Physicochemical properties of carrot juice containing Phellinus linteus extract and beet extract fermented by Leuconostoc mesenteroides SM. J. Korean Soc. Food Sci. Nutr. 37: 798–804 (2008)

    Article  CAS  Google Scholar 

  11. Kim JE, Whang K, Lee SP. ACE inhibitory and hydrolytic enzyme activities in textured vegetable protein in relation to the solid state fermentation period using Bacillus subtilis HA. Food Sci. Biotechnol. 19: 487–495 (2010)

    Article  CAS  Google Scholar 

  12. Choi YS, Bahn JH, Jeon SG, Chung YM, Hong JW, Ahn JY, Lee EH, Cho SW, Park JK, Beak NI. Stimulatory effects of ginsenosides on bovine brain glutamate decarboxylase. J. Biochem. Mol. Biol. 31: 233–239 (1998)

    CAS  Google Scholar 

  13. Oh SH, Oh CH. Brown rice extracts with enhanced levels of GABA stimulate immune cells. Food Sci. Biotechnol. 12: 248–252 (2003)

    CAS  Google Scholar 

  14. Yokoyama S, Hiramatsu JI, Hayakawa K. Production of gammaaminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J. Biosci. Biotech. 93: 95–97 (2002)

    CAS  Google Scholar 

  15. Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzuki I, Aso H. Lactococcus latis contains only one glutamate decarboxylase gene. Microbiology 145: 1375–1380 (1999)

    Article  CAS  Google Scholar 

  16. Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellom-Fontaine MN. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl. Environ. Microbiol. 63: 1725–1731 (1997)

    CAS  Google Scholar 

  17. Park MJ, General T, Lee SP. Physicochemical properties of roasted soybean flour bioconverted by solid-state fermentation using Bacillus subtilis and Lactobacillus plantarum. Prev. Nutr. Food Sci. 17: 36–45 (2012)

    Article  CAS  Google Scholar 

  18. Kuniota M. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl. Microbiol. Biotechnol. 47: 467–475 (1997)

    Google Scholar 

  19. Genc M, Zorba M, Oza G. Determination of rheological properties of boza by using physical and sensory analysis. J. Food Eng. 52: 95–98 (2002)

    Article  Google Scholar 

  20. Son MJ, Son SJ, Lee SP. Physicochemical properties of carrot juice containing Phellinus linteus extract and beet extract fermented by Leuconostoc mesenteroides SM. J. Korean Soc. Food Sci. Nutr. 37: 798–804 (2008)

    Article  CAS  Google Scholar 

  21. Oh SM, Kim CS, Lee SP. Characterization of the functional properties of soy milk cake fermented by Bacillus sp. Food Sci. Biotechnol. 15: 54–59 (2006)

    Google Scholar 

  22. Cutting SM. Bacillus probiotics. Food Microbiol. 28: 214–220 (2011)

    Article  Google Scholar 

  23. Berekaa M, AL-Otaibi MS. Enhanced production of poly glutamic acid by Bacillus sp. SW1-2 using statistical experimental design. African J. Biotechnol. 12: 481–490 (2013)

    CAS  Google Scholar 

  24. Oh SM, Kim CS, Lee SP. Functional properties of soybean curd residue fermented by Bacillus sp. J. Korean Soc. Food Sci. Nutr. 35: 115–120 (2006)

    Article  CAS  Google Scholar 

  25. Ju KE, Oh NS. Effect of the mixed culture of Bacillus subtilis and Lactobacillus plantarum on the quality of Cheonggukjang. Korean J. Food Sci. Technol. 41: 399–404 (2009)

    Google Scholar 

  26. Seo JH, Kim CS, Lee SP. Physicochemical properties of poly-γ-glutamic acid produced by a novel Bacillus subtilis HA isolated from Cheonggukjang. J. Food Sci. Nutr. 13: 354–361 (2008)

    Article  CAS  Google Scholar 

  27. Kongklom N, Chuensangjun C, Pechyen C, Sirisansaneeyakul S. Production of poly-gamma-glutamic acid by Bacillus licheniformis: synthesis and characterization. J. Met. Mater. Miner. 22: 7–11 (2012)

    CAS  Google Scholar 

  28. Shih IL, Wu JY. Biosynthesis and application of poly (gammaglutamic acid). In: Microbial Production of Biopolymers and Polymer Precursors. p. 101. In: Bernd HA (ed). Caister Academic Press, Norfolk, UK (2009)

    Google Scholar 

  29. Shih IL, Yu YT. Simultaneous and selective production of levan and poly (gamma-glutamic acid) by Bacillus subtilis. Biotechnol. Lett. 27: 103–106 (2005)

    Article  CAS  Google Scholar 

  30. Cagno RD, Mazzacane F, Rizzello CG, Angelis MD, Gluliani GT, Meloni M, Servi BD, Gobbetti M. Snythesis of gammaaminobutyric acid by Lactobacillus plantarum DSM19463: Functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 86: 731–741 (2009)

    Article  CAS  Google Scholar 

  31. Hosoi T, Ametani A, Kiuchi K, Kaminogawa S. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis, catalase, or subtilisin. Can. J. Microbiol. 46: 892–897 (2000)

    Article  CAS  Google Scholar 

  32. Zanuy D, Aleman C, Munoz-Guerra S. On the helical conformation of un-ionized poly(gamma-d-glutamic acid). Int. J. Biol. Macromol. 23: 175–184 (1998)

    Article  CAS  Google Scholar 

  33. Kim JE, Kim MA, Kim JS, Park DC, Lee SP. Enhancing the organoleptic and functional properties of jujube by a quick aging process. Prev. Nutr. Food Sci. 18: 50–59 (2013)

    Article  CAS  Google Scholar 

  34. Watanabe Y, Hayakawa K, Ueno H. Effects of co-culturing lab on GABA production. J. Biol. Macromol. 11: 3–13 (2011)

    Article  CAS  Google Scholar 

  35. Cha CN, Lee YE, Kang IJ, Kim S, Choi HJ, Lee HJ. Efficiency of a Lactobacillus plantarum-Bacillus subtilis combination on growth performance and fecal microflora populations of broiler chickens. J. Agric. Life Sci. 46: 81–88 (2012)

    Google Scholar 

  36. Lu X, Xie C, Gu Z. Optimization of fermentative parameters for GABA enrichment by Lactococcus lactis. Czech J. Food Sci. 27: 433–442 (2009)

    CAS  Google Scholar 

  37. Mazzoli R, Pessione E, Dufour M, Laroute V, Gabriella M, Cluuta C, Cocaign-Bousquet M, Loubiere P. Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: Combined transcriptomic and proteomic analysis. Amino Acids 39: 727–737 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Pin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.E., Kim, J.S., Song, Y.C. et al. Novel bioconversion of sodium glutamate to γ-poly-glutamic acid and γ-amino butyric acid in a mixed fermentation using Bacillus subtilis HA and Lactobacillus plantarum K154. Food Sci Biotechnol 23, 1551–1559 (2014). https://doi.org/10.1007/s10068-014-0211-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0211-4

Keywords

Navigation