Skip to main content
Log in

Health promoting properties of protein hydrolysates produced from oil palm (Elaeis guineensis) kernel

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to determine the lipid-lowering properties, antioxidant capacity (AC) and angiotensin-I converting enzyme (ACE)-inhibitory activity of oil palm kernel protein hydrolysates (OPKHs) that were produced using protease and pepsin-pancreatin hydrolysis. The effects of the OPKHs on apolipoprotein B (apoB) secretion was assessed using HepG2 cells as a model and the AC of the OPKHs was determined based on ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP). Both protease and pepsin-pancreatin hydrolysates reduced apoB secretion significantly (p<0.05). The OPKHs scavenged ABTS radicals effectively and demonstrated a high reducing power even at a low concentration (1 mg/mL). The AC of the OPKHs was significantly correlated with the OPKHs protein content. However, the OPKHs demonstrated very low ACE-inhibitory activity. The pepsinpancreatin hydrolysate demonstrated significant lipidlowering properties, favourable AC and ACE inhibitory activity in compared to protease hydrolysate. Therefore, OPKH demonstrate the potential as a nutraceutical for functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO. World Health Statistics 2012. World Health Organization, Geneva, Switzerland (2012)

    Google Scholar 

  2. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary artery disease in women through diet and lifestyle. New Engl. J. Med. 343: 16–22 (2000)

    Article  CAS  Google Scholar 

  3. Appel LJ. The effects of protein intake on blood pressure and cardiovascular disease. Curr. Opin. Lipidol. 14: 55–59 (2003)

    Article  CAS  Google Scholar 

  4. Bettzieche A, Brandsch C, Eder K, StangI GI. Lupin protein acts hypocholesterolemic and increases milk fat content in lactating rats by influencing the expression of genes involved in cholesterol homeostasis and triglyceride synthesis. Mol. Nutr. Food Res. 53: 1134–1142 (2009)

    Article  CAS  Google Scholar 

  5. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. New Engl. J. Med. 333: 276–282 (1995)

    Article  CAS  Google Scholar 

  6. Yang L, Chen JH, Lv J, Wu Q, Xu T, Zhang H, Liu QH, Yang HK. Rice protein improves adiposity, body weight and reduces lipids level in rats through modification of triglyceride metabolism. Lipids Health Dis. 11: 24–34 (2012)

    Article  CAS  Google Scholar 

  7. Yang L, Chen JH, Zhang H, Qiu W, Liu QH, Peng X, Li YN, Yang HK. Alkali treatment affects in vitro digestibility and bile acid binding activity of rice protein due to varying its ratio of arginine and lysine. Food Chem. 132: 925–930 (2012)

    Article  CAS  Google Scholar 

  8. Shukla A, Bettzieche A, Hirche F, Brandsch C, StangI GI, Eder K. Dietary fish protein alters blood lipid concentrations and hepatic genes involved in cholesterol homeostasis in the rat model. Brit. J. Nutr. 96: 674–682 (2006)

    CAS  Google Scholar 

  9. Marrufo-Estrada DM, Segura-Campos MR, Chel-Guerrero LA, Betancur-Ancona DA. Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolysates with biological activity. Food Chem. 138: 77–83 (2013)

    Article  CAS  Google Scholar 

  10. Segura-Campos MR, Salazar-Vega IM, Chel-Guerrero LA, Betancur-Ancona DA. Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT-Food Sci. Technol. 50: 723–731 (2013)

    Article  CAS  Google Scholar 

  11. Udenigwe CC, Aluko RE. Multifunctional cationic peptide fractions from flaxseed protein hydrolysates. Plant Food. Hum. Nutr. 67: 1–9 (2012)

    Article  CAS  Google Scholar 

  12. Chang SK, Ismail A, Yanagita T, Mohd Esa N, Baharuldin MTH. Biochemical characterisation of the soluble proteins, protein isolates and hydrolysates from oil palm (Elaeis guineensis) kernel. Food Bioscience 7: 1–10 (2014)

    Article  Google Scholar 

  13. Sun Y, Hayakawa S, Ogawa M, Waknukool S, Guan Y, Matsumoto Y. Evaluation of angiotensin I-converting enzyme (ACE) inhibitory activities of hydrolysates generated from byproducts of freshwater clam. Food Sci. Biotechnol. 20: 303–310 (2011)

    Article  Google Scholar 

  14. Megías C, Mar Yust MD, Pedroche J, Lquari H, Girón-Calle J, Alaiz M, Millán F, Vioque J. Purification of an ACE Inhibitory peptide after hydrolysis of Sunflower (Helianthus annuus L.) protein isolates. J. Agr. Food Chem. 52: 1928–1932 (2004)

    Article  Google Scholar 

  15. Aluko RE, Monu E. Functional and bioactive properties of Quinoa seed protein hydrolysates. J. Food Sci. 68: 1254–1258 (2003)

    Article  CAS  Google Scholar 

  16. Jang A, Lee M. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci. 69: 653–661 (2005)

    Article  CAS  Google Scholar 

  17. AOAC. Official Methods of Analysis of AOAC Intl. 18th ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA (2007)

    Google Scholar 

  18. Liu ZH, Zeng S. Cytotoxicity of ginkgolic acid in HepG2 cells and primary rat hepatocytes. Toxicol. Lett. 187: 131–136 (2009)

    Article  CAS  Google Scholar 

  19. Yotsumoto H, Hara E, Naka S, Adlof RO, Emken EA, Yanagita T. 10trans, 12cis-Linoleic acid reduces apolipoprotein B secretion in HepG2 cells. Food Res. Int. 31: 403–409 (1999)

    Article  Google Scholar 

  20. Inoue N, Nagao K, Sakata K, Yamano N, Gunawardena PER, Han S-Y, Matsui T, Nakamori T, Furuta H, Takamatsu K, Yanagita T. Screening of soy protein-derived hypotriglyceridemic dipeptides in vitro and in vivo. Lipids Health Dis. 10: 85–95 (2011)

    Article  CAS  Google Scholar 

  21. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)

    Article  CAS  Google Scholar 

  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26(9/10): 1231–1237 (1999)

    Article  CAS  Google Scholar 

  23. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637–1648 (1971)

    Article  CAS  Google Scholar 

  24. Marambe HK, Shand PJ, Wanasundara JPD. Release of angiotensin I-converting enzyme inhibitory peptides from flaxseed (Linum usitatissmum L.) protein under simulated gastrointestinal digestion. J. Agr. Food Chem. 59: 9596–9604 (2011)

    Article  CAS  Google Scholar 

  25. Huang D-J, Ou B-X, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841–1856 (2005)

    Article  CAS  Google Scholar 

  26. Zhang T, Li YH, Miao M, Jiang B. Purification and characterization of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chem. 128: 28–33 (2011)

    Article  CAS  Google Scholar 

  27. Maruse R. Antioxidative effect of amino-acids. Nature 186: 886–887 (1960)

    Article  Google Scholar 

  28. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 48: 430–441 (2008)

    Article  CAS  Google Scholar 

  29. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial Investigators. New Engl. J. Med. 335: 1001–1009 (1996)

    Article  CAS  Google Scholar 

  30. Yanagita T, Han SY, Hu Y, Nagao K, Kitajima H, Murakami S. Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells. Lipids Health Dis. 7: 38–44 (2008)

    Article  Google Scholar 

  31. Vermeissen V, Van Camp V, Verstraete W. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Brit. J. Nutr. 92: 357–366 (2004)

    Article  Google Scholar 

  32. Sarmadi B, Ismail A, Hamid M. Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates. Food Res. Int. 44: 290–296 (2011)

    Article  CAS  Google Scholar 

  33. Li GH, Le GW, Shi YH, Shrestha S. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 24: 469–486 (2004)

    Article  CAS  Google Scholar 

  34. Sampath Kumar NS, Nazeer RA, Jaiganesh R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla), and croaker (Otolithes ruber). Amino Acids 42: 1641–1649 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S.K., Hamajima, H., Ismail, A. et al. Health promoting properties of protein hydrolysates produced from oil palm (Elaeis guineensis) kernel. Food Sci Biotechnol 23, 1279–1285 (2014). https://doi.org/10.1007/s10068-014-0176-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0176-3

Keywords

Navigation