Skip to main content
Log in

Identification of extracellular DNase-producing bacterial populations on catfish fillets during refrigerated storage

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Food spoilage is a major problem faced by consumers across the globe. As an enzyme that degrades DNA, DNase production on fish tissue seemed likely to aid in fish spoilage. Based on physical characteristics, bacteria producing extracellular DNase were isolated on selective media. 16S rDNA sequences were obtained identifying isolates as bacteria belonging to Aeromonas spp., Serratia spp., Shewanella spp., and Rahnella spp. Aeromonas spp. were the predominant bacteria isolated in this study; this statistically suggests that Aeromonas spp. are dominant in DNase-producing bacterial populations on catfish tissue. Results obtained in this study suggest that extracellular DNase-producing bacteria play a large role in catfish spoilage and support the need for further research on the role of Aeromonas spp. in fish spoilage. Rahnella spp. was isolated from catfish fillets in this study and identified, for the first time, as DNase producing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fraser OP, Sumar S. Compositional changes and spoilage in fish — Microbiological induced deterioration. Nutr. Food Sci. 98: 325–329 (1998)

    Article  Google Scholar 

  2. Gram L, Dalgaard P. Fish spoilage bacteria — Problems and solutions. Curr. Opin. Biotechnol. 13: 262–266 (2002)

    Article  CAS  Google Scholar 

  3. Harewood P. Detection of fish spoilage by colorimetry. U.S. Patent 5,744,321 (1998)

    Google Scholar 

  4. Lee JL, Levin RE. Use of ethidium bromide monoazide for quantification of viable and dead mixed bacterial flora from fish fillets by polymerase chain reaction. J. Microbiol. Meth. 67: 456–462 (2006)

    Article  CAS  Google Scholar 

  5. Lerke P, Farber L, Adams R. Bacteriology of spoilage of fish muscle — IV. Role of protein. J. Appl. Microbiol. 15: 770–776 (1967)

    CAS  Google Scholar 

  6. Shangong W, Gao T, Zheng Y, Wang W, Cheng Y, Wang G. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 303: 1–7 (2010)

    Article  Google Scholar 

  7. Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen TF. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl. Environ. Microb. 65: 969–973 (1999)

    CAS  Google Scholar 

  8. Kanki M, Yoda T, Ishibashi M, Tsukamoto T. Photobacterium phosphoreum caused a histamine fish poisoning incident. Int. J. Food Microbiol. 92: 79–87 (2004)

    Article  CAS  Google Scholar 

  9. Lee JL, Levin RE. Selection of universal primers for PCR quantification of total bacteria associated with fish fillets. Food Biotechnol. 20: 275–285 (2006)

    Article  CAS  Google Scholar 

  10. Lehane L, Olley J. Histamine fish poisoning revisited. Int. J. Food Microbiol. 58: 1–37 (2000)

    Article  CAS  Google Scholar 

  11. Suhalim RR, Huang Y-W, Chen J. Interaction of Escherichia coli O157:H7 E318 cells with the mucus of harvested channel catfish (Ictalurus punctatus). Food Sci. Technol. -LEB 40: 1266–1270 (2007)

    Article  CAS  Google Scholar 

  12. Suhalim RR, Huang Y-W, Burtle GJ. Survival of Escherichia coli O157:H7 in channel catfish pond and holding tank water. Food Sci. Technol. -LEB 41: 1116–1121 (2008)

    Article  CAS  Google Scholar 

  13. Dalgaard P. Modeling of microbial activity and prediction of shelf life for packed fresh fish. Int. J. Food Microbiol. 26: 305–317 (1995)

    Article  CAS  Google Scholar 

  14. Lee JL, Levin RE. Quantification of total viable bacteria on fish fillets by using ethidium bromide monoazide real-time polymerase chain reaction. Int. J. Food Microbiol. 118: 312–317 (2007)

    Article  CAS  Google Scholar 

  15. Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M. Food spoilage — Interactions between food spoilage bacteria. Int. J. Food Microbiol. 78: 79–97 (2002)

    Article  Google Scholar 

  16. Nellemann C. The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises. UNEP, Arendal, Norway. pp. 23–30 (2009)

    Google Scholar 

  17. Park J-M, Shin J-H, Lee D-W, Song J-C, Suh H-J, Chang U-J, Kim J-M. Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 19: 541–546 (2010)

    Article  CAS  Google Scholar 

  18. Da Silva LVA, Prinyawiwatkul W, King JM, No HK, Bankston JD, Ge B. Effect of preservatives on microbial safety and quality of smoked blue catfish (Ictalurus furcatus) steaks during roomtemperature storage. Food Microbiol. 25: 958–963 (2008)

    Article  Google Scholar 

  19. Diep CN, Cam PM, Vung NH, Lai TT, My NT. Isolation of Pseudomonas stutzeri in wastewater of catfish fish-ponds in the Mekong delta and its application for wastewater treatment. Bioresource Technol. 100: 3787–3791 (2009)

    Article  CAS  Google Scholar 

  20. Manju S, Jose L, Srinivasagopal TK, Ravishankar CN, Lalitha KV. Effects of sodium acetate dip treatment and vacuum-packaging on chemical, microbiological, textural, and sensory changes of pearlspot (Etroplus suratensis) during chill storage. Food Chem. 102: 27–35 (2007)

    Article  CAS  Google Scholar 

  21. Nawaz M, Khan AA, Khan S, Sung K, Steele R. Isolation and characterization of tetracycline-resistant Citrobacter spp. from catfish. Food Microbiol. 25: 85–91 (2008)

    Article  CAS  Google Scholar 

  22. Sarter S, Khanguyen H, Hung L, Lazard J, Montet D. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food Control 18: 1391–1396 (2007)

    Article  CAS  Google Scholar 

  23. Ye S, Li H, Qiao G, Li Z. First case of Edwardsiella ictaluri infection in china farmed yellow catfish Pelteobagrus fulvidraco. Aquaculture 292: 6–10 (2009)

    Article  Google Scholar 

  24. Janda JM, Bottone EJ. Pseudomonas aeruginosa enzyme profiling: Predictor of potential invasiveness and use as an epidemiological tool. J. Clin. Microbiol. 14: 55–60 (1981)

    CAS  Google Scholar 

  25. Porschen RK, Sonntag S. Extracellular deoxyribonuclease production by anaerobic bacteria. J. Appl. Microbiol. 27: 1031–1033 (1974)

    CAS  Google Scholar 

  26. Sadovski AY, Levin RE. Extracellular nuclease activity of fish spoilage bacteria, fish pathogens, and related species. J. Appl. Microbiol. 17: 787–789 (1969)

    CAS  Google Scholar 

  27. Castro-Escarpulli G, Figueras MJ, Aguilera-Arreola G, Soler L, Fernandez-Rendon, Aparicia GO, Guarro J, Chacon MR. Characterization of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico. Int. J. Food Microbiol. 84: 41–49 (2003)

    Article  CAS  Google Scholar 

  28. Adams R, Farber L, Lerke P. Bacteriology of spoilage of fish muscle — II. Incidence of spoilers during spoilage. J. Appl. Microbiol. 12: 277–279 (1964)

    CAS  Google Scholar 

  29. Chai T, Chen C, Rosen A, Levin RE. Detection and incidence of specific species of spoilage bacteria on fish. J. Appl. Microbiol. 16: 1738–1741 (1968)

    CAS  Google Scholar 

  30. Gram L. Inhibitory effect against pathogenic and spoilage bacteria of Pseudomonas strains isolated from spoiled and fresh fish. Appl. Environ. Microb. 59: 2197–2203 (1993)

    CAS  Google Scholar 

  31. Gram L, Huss HH. Microbial spoilage of fish and fish products. Int. J. Food Microbiol. 33: 121–137 (1996)

    Article  CAS  Google Scholar 

  32. Lerke P, Adams R, Farber L. Bacteriology of spoilage of fish muscle — I. Sterile press juice as a suitable experimental medium. J. Appl. Microbiol. 11: 458–462 (1963)

    CAS  Google Scholar 

  33. Lerke P, Adams R, Farber L. Bacteriology of spoilage of fish muscle — III. Characterization of spoilers. J. Appl. Microbiol. 13: 625–630 (1965)

    CAS  Google Scholar 

  34. Levin RE. Correlation of DNA base composition and metabolism of Pseudomonas putrefaciens isolates from food, human clinical specimens, and other sources. Anton. Leeuw. Int. J. G. 38: 121–127 (1972)

    Article  CAS  Google Scholar 

  35. Levin RE. Detection and incidence of specific species of spoilage bacteria on fish — I. Methodology. J. Appl. Microbiol. 16: 1734–1737 (1968)

    CAS  Google Scholar 

  36. Lobben JC, Lee JS. Roles of microorganisms in the deterioration of rockfish. J. Appl. Microbiol. 16: 1320–1325 (1968)

    CAS  Google Scholar 

  37. Smith PB, Hancock GA, Rhoden DL. Improved medium for detecting deoxyribonuclease-producing bacteria. J. Appl. Microbiol. 18: 991–993 (1969)

    CAS  Google Scholar 

  38. Mulet M, Bennasar A, Lalucat J, Garcia-Valdes E. An rpoD-based PCR procedure for the identification of Pseudomonas spp. and for their detection in environmental samples. Mol. Cell. Probe 23: 140–147 (2009)

    Article  CAS  Google Scholar 

  39. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microb. 56: 1875–1881 (1990)

    CAS  Google Scholar 

  40. Oliver JD. The viable but nonculturable state in bacteria. J. Microbiol. 43: 93–100 (2005)

    Google Scholar 

  41. Lee J-L, Levin RE. Direct application of the polymerase chain reaction for quantification of total bacteria on fish fillets. Food Biotechnol. 20: 287–298 (2006)

    Article  CAS  Google Scholar 

  42. Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW. Phylogeny of gammaproteobacteria. J. Bacteriol. 192: 2305–2314 (2010)

    Article  CAS  Google Scholar 

  43. Vogel BF, Venkateswaran K, Satomi M, Gram L. Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish. Appl. Environ. Microb. 71: 6689–6697 (2005)

    Article  Google Scholar 

  44. Bruhn JB, Christensen AB, Flodgaard LR, Nielsen KF, Larsen TO, Givskov M, Gram L. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat. Appl. Environ. Microb. 70: 4293–4302 (2004)

    Article  CAS  Google Scholar 

  45. Tash K. Rahnella aquatilis bacteremia from a suspected urinary source. J. Clin. Microbiol. 43: 2526–2528 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Lim Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickey, M.E., Besong, S.A., Kalavacharla, V. et al. Identification of extracellular DNase-producing bacterial populations on catfish fillets during refrigerated storage. Food Sci Biotechnol 22, 87–92 (2013). https://doi.org/10.1007/s10068-013-0012-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0012-1

Keywords

Navigation