Skip to main content
Log in

Free phenolic contents and their antioxidant activities of fresh and fermented rice spent water

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A new rice milling produces large quantities of a wet byproduct, rice spent water (RSW) containing rice polishings. However, RSW is wasted or destined to undervalued uses. Therefore, the objective of this study was to improve the bioaccessibility of phytochemical phenolics in RSW by means of value-added fermentation process. This study was designed accordingly to compare the methanol-extractable free phenolic contents and their antioxidant activity in fresh and fermented RSW. The results showed that methanol extraction yielded 7 fold higher phenolic contents from the fermented RSW than from the fresh. In addition, the DPPH radical scavenging activity and the reducing power of each RSW equivalent were positively correlated with the methanol-extractable phenolic contents of each equivalent before and after the fermentation, respectively. These data suggest that more insoluble bound phenolic compounds may be freely released in RSW during the fermentation and the bioaccessibility of phytochemical phenolics in RSW may be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wojdyło A, Oszmianski J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105: 940–949 (2007)

    Article  Google Scholar 

  2. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 47: 3954–3962 (1999)

    Article  CAS  Google Scholar 

  3. Shashidi F, Wanasundara PK. Phenolic antioxidants. Crit. Rev. Food Sci. 32: 67–103 (1992)

    Article  Google Scholar 

  4. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 579: 200–213 (2005)

    CAS  Google Scholar 

  5. Singleton VL, Rossi Jr JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158 (1965)

    CAS  Google Scholar 

  6. Zhou Z, Robards K, Helliwell S, Blanchard C. The distribution of phenolic acids in rice. Food Chem. 87: 401–406 (2004)

    Article  CAS  Google Scholar 

  7. Cole RA. Phenolic acids associated with the resistance of lettuce cultivars to the lettuce root aphid. Ann. Appl. Biol. 105: 129–145 (1984)

    Article  CAS  Google Scholar 

  8. Lo KM, Cheung PCK. Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. Alba. Food Chem. 89: 533–539 (2005)

    Article  CAS  Google Scholar 

  9. Oyaizu M. Antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307–315 (1986)

    CAS  Google Scholar 

  10. Walepole RE, Myers RH. Probability and Statistics for Engineers and Scientists. 7th ed. Macmillan Publishing, New York, NY, USA. pp. 290–357 (2002)

    Google Scholar 

  11. Thompson LU. Antioxidant and hormone-mediated health benefits of whole grains. Crit. Rev. Food Sci. 34: 473–497 (1994)

    Article  CAS  Google Scholar 

  12. Maillard MN, Berset C. Evolution of antioxidant activity during kilning: Role of insoluble bound phenolic acids of barley and malt. J. Agr. Food Chem. 43: 1789–1793 (1995)

    Article  CAS  Google Scholar 

  13. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073S–2085S (2000)

    CAS  Google Scholar 

  14. Vinson JA, Hao Y, Su X, Zubik L. Phenol antioxidant quantity and quality in foods: Vegetables. J. Agr. Food Chem. 46: 3630–3634 (1998)

    Article  CAS  Google Scholar 

  15. Vinson JA, Hao Y, Su X, Zubik L. Phenol antioxidant quantity and quality in foods: Fruits. J. Agr. Food Chem. 49: 5315–5321 (2001)

    Article  CAS  Google Scholar 

  16. Adom KK, Liu RH. Antioxidant activity of grains. J. Agr. Food Chem. 50: 6182–6187 (2002)

    Article  CAS  Google Scholar 

  17. Bunzel M, Ralph J, Martia JM, Hatfield RD, Steinhart H. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J. Sci. Food Agr. 81: 653–660 (2001)

    Article  CAS  Google Scholar 

  18. Sosulski F, Krygier K, Hogge L. Free, esterified, and insolublebound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J. Agr. Food Chem. 30: 337–340 (1982)

    Article  CAS  Google Scholar 

  19. Adom KK, Sorrells ME, Liu RH. Phytochemical profiles and antioxidant activity of wheat varieties. J. Agr. Food Chem. 51: 7825–7834 (2003)

    Article  CAS  Google Scholar 

  20. Moore J, Hao Z, Zhou K, Luther M, Costa J, Yu L. Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat. J. Agr. Food Chem. 53: 6649–6657 (2005)

    Article  CAS  Google Scholar 

  21. Liyana-Pathirana CM, Shahidi F. Importance of insoluble bound phenolics to antioxidant properties of wheat. J. Agr. Food Chem. 54: 1256–1264 (2006)

    Article  CAS  Google Scholar 

  22. Rhodes DI, Sadek M, Stone BA. Hydroxycinnamic acids in walls of wheat aleurone cells. J. Cereal Sci. 36: 67–81 (2002)

    Article  CAS  Google Scholar 

  23. Mathew S, Abraham TE. Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit. Rev. Biotechnol. 24: 59–83 (2004)

    Article  CAS  Google Scholar 

  24. Harukaze A, Murata M, Homma S. Analysis of free and bound phenolics in rice. Food Sci. Technol. Res. 5: 74–79 (1999)

    Article  Google Scholar 

  25. Liang CH, Syu JL, Mau JL. Antioxidant properties of solid-state fermented adlay and rice by Phellinus linteus. Food Chem. 116: 841–845 (2009)

    Article  CAS  Google Scholar 

  26. Kim SY, Kim YS, Kim YS, Kim JM, Suh HJ. The application of monascal rice in rice beverage preparation. LWT-Food Sci. Technol. 41: 1204–1209 (2008)

    Article  CAS  Google Scholar 

  27. Tomohide U, Atsushi I, Tetsuya M, Masaharu K, Kengo K, Hiroshi Y, Yukio Y, Hiromasa I. Ferulic acid production in the brewing of rice wine (sake). J. Inst. Brew. 115: 116–121 (2009)

    Google Scholar 

  28. Choi HK, Lim YS, Kim YS, Park SY, Lee CH, Hwang KW, Kwon DY. Free-radical-scavenging and tyrosinase-inhibition activities of cheonggukjang samples fermented for various times. Food Chem. 106: 564–568 (2008)

    Article  CAS  Google Scholar 

  29. Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P. Production of phenolics from corn cobs by coupling enzymic treatment and solid state fermentation. Eng. Life Sci. 4: 283–286 (2004)

    Article  CAS  Google Scholar 

  30. Kayode APP, Hounhouigana JD, Noutb MJR. Impact of brewing process operations on phytate, phenolic compounds, and in vitro solubility of iron and zinc in opaque sorghum beer. LWT-Food Sci. Technol. 40: 834–841 (2007)

    Article  CAS  Google Scholar 

  31. Hata S, Wiboonsirikul J, Maeda A, Kimura Y, Adachi S. Extraction of defatted rice bran by subcritical water treatment. Biochem. Eng. J. 40: 44–53 (2008)

    Article  CAS  Google Scholar 

  32. Jintana W, Yukitakak K, Megumiki K, Hisahiro M, Takuo T, Shuji A. Properties of extracts from defatted rice bran by its subcritical water treatment. J. Agr. Food Chem. 55: 8759–8765 (2007)

    Article  Google Scholar 

  33. Kern SM, Bennett RN, Mellon FA, Kroon PA, Garcia-Conesa M. Absorption of hydrocinnamates in humans after high bran cereal consumption. J. Agr. Food Chem. 51: 6050–6055 (2003)

    Article  CAS  Google Scholar 

  34. Lequart C, Nuzillard J, Kurek B, Debeire P. Hydrolysis of wheat bran and straw by an endoxylanase: Production and structural characterization of cinnamoyl-oligosaccharides. Carbohyd. Res. 319: 102–111 (1999)

    Article  CAS  Google Scholar 

  35. Faulds CB, Mandalari G, LoCurto R, Bisignano G, Waldron KW. Arabinoxylan and mono- and dimeric ferulic acid release from brewer’s grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humincola insolens. Appl. Microbiol. Biot. 64: 644–650 (2004)

    Article  CAS  Google Scholar 

  36. Yuan X, Wang J, Yao H. Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus subtilis. Food Chem. 95: 484–492 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun-Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Park, KS., Kim, MJ. et al. Free phenolic contents and their antioxidant activities of fresh and fermented rice spent water. Food Sci Biotechnol 19, 1415–1420 (2010). https://doi.org/10.1007/s10068-010-0202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0202-z

Keywords

Navigation