Skip to main content
Log in

Long-term spatiotemporal evolution of land subsidence in the urban area of Bologna, Italy

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Land subsidence in urban areas is a highly significant and globally widespread geological hazard. This type of ground deformation process commonly occurs in rapidly expanding cities due to the combined effects of structural loading from built infrastructures and excessive groundwater withdrawals due to the increasing water demand of growing populations and industries. In this study, we perform a detailed analysis of ongoing subsidence in Bologna (Italy), with respect to historical pumping trends and a 3D geological model of the subsurface. Since the 1960s, the city of Bologna has experienced severe subsidence attributed to the overexploitation of aquifers for civil water use. Ground deformation peaked in the 1970s, with documented maximum rates of approximately 100 mm/year, causing structural and infrastructural damages. Over the years, the subsidence process has been intensively monitored by local authorities, collecting extensive ground displacement measurements employing different and increasingly sophisticated techniques, including topographic levelling and satellite interferometry. Long-term data are essential for a comprehensive understanding of the subsidence process evolution and for calibrating numerical or statistical predictive models. Therefore, we developed a methodology to integrate ground-based and remotely sensed monitoring data and produce cumulative ground displacement time series and maps, capturing the long-term temporal evolution and spatial distribution of the subsidence process, respectively. The long-term deformation field reconstructed consistently aligns with the 3D geological model of the area, and the produced cumulative displacement curves consistently match the pluriannual trends observed in groundwater level and pumping monitoring time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abidin HZ, Andreas H, Gamal M, Gumilar I, Napitupulu N, Fukuda Y, Deguchi T, Maruyama Y, Riawan E (2010) Land subsidence characteristics of the Jakarta basin (Indonesia) and its relation with groundwater extraction and sea level rise. In: Taniguchi M, Holman IP (eds) Groundwater response to changing climate. CRC Press, London, pp 113–130. https://doi.org/10.1201/b1053013

    Chapter  Google Scholar 

  • Abidin HZ, Djaja R, Andreas H, Gamal M, Hirose K, Maruyama Y (2004) Capabilities and constraints of geodetic techniques for monitoring land subsidence in the urban areas of Indonesia. Geomat Res Aust 81:45–58

    Google Scholar 

  • Alessi R (1985) La subsidenza nel centro storico della città di Bologna. In: Il grado di dissesto dei fabbricati nella zona di via Zamboni, vol 456. Inarcos, Bologna, pp 16-24

  • Amorosi A, Bruno L, Rossi V, Severi P, Hajdas I (2014) Paleosol architecture of a late Quaternary basin-margin sequence and its implications for high-resolution, nonmarine sequence stratigraphy. Glob Planet Chang 112:12–25

    Article  Google Scholar 

  • Amorosi A, Caporale L, Farina M, Preti D, Severi P (1997) Late Quaternary sedimentation at the southern margin of the Po Basin (Northern Italy). Geologia Insubrica 2:149–159

    Google Scholar 

  • Amorosi A, Farina M, Severi P, Preti D, Caporale L, Di Dio G (1996) Genetically related alluvial deposits cross active fault zones: an example of alluvial fan-terrace correlation from the upper Quaternary of the southern Po Basin, Italy. Sediment Geol 10’2:275–295

    Article  Google Scholar 

  • Arca S, Beretta GP (1985) Prima sintesi geodetico-geologica sui movimenti verticali del suolo nell’Italia settentrionale. Bollettino Di Geodesia e Scienze Affini 44(2):125–156

    Google Scholar 

  • Argnani A, Barbacini G, Bernini M, Camurri F, Ghielmi M, Papani P, Rizzini F, Rogledi S, Torelli L (2003) Gravity tectonics driven by Quaternary uplift in the Northern Apennines: insights from the La Spezia-Reggio Emilia geo-transect. In: Bartolini C, Piccini L, Catto NR (eds) Uplift and erosion; driving processes and resulting landforms; dynamic relations between crustal and surficial processes. Quatern. Int, pp 13–26

    Google Scholar 

  • ARPAE (Agenzia Prevenzione Ambientale Energia Emilia-Romagna) (2008) Analisi preliminare degli effetti dei prelievi di acque sotterranee sulla evoluzione recente del fenomeno della subsidenza in Emilia-Romagna, Bologna, 2008. https://www.arpae.it/it/temi-ambientali/suolo/rapporti/rapporti-subsidenza/analisi-effetti-dei-prelievi-acque-sotterranee-sul-fenomeno-della-subsidenza-in-er/view

  • ARPAE (Agenzia Prevenzione Ambientale Energia Emilia-Romagna) (2018) Rilievo della subsidenza nella pianura emiliano-romagnola - seconda fase, Bologna, 2018. https://www.arpae.it/it/temi-ambientali/suolo/rapporti/rapporti-subsidenza/rilievo-della-subsidenza-nella-pianura-er-seconda-fase-1.pdf/view

  • Attard G, Winiarski T, Rossier Y, Eisenlohr L (2016) Revue: Impact des structures du sous-sol sur les écoulements des eaux souterraines en milieu urbain. Hydrogeol J 24:5–19. https://doi.org/10.1007/s10040-015-1317-3

    Article  Google Scholar 

  • Bagheri-Gavkosh M, Hosseini SM, Ataie-Ashtiani B, Sohani Y, Ebrahimian H, Morovat F, Ashrafi S (2021) Land subsidence: a global challenge. Sci Total Environ 778. https://doi.org/10.1016/j.scitotenv.2021.146193

  • Bergonzoni A, Elmi C (1985) La geologia dell’area bolognese in relazione al fenomeno della subsidenza, vol 456. Inarcos, Bologna, pp 2–7

  • Bitelli G, Bonsignore F, Del Conte S, Franci F, Lambertini A, Novali F, Severi P, Vittuari L (2020) Updating the subsidence map of Emilia-Romagna region (Italy) by integration of SAR interferometry and GNSS time series: the 2011–2016 period. Proc IAHS 382:39–44. https://doi.org/10.5194/piahs-382-39-2020

    Article  Google Scholar 

  • Bitelli G, Bonsignore F, Pellegrino I, Vittuari L (2015) Evolution of the techniques for subsidence monitoring at regional scale: the case of Emilia-Romagna region (Italy). Proc IAHS 372:315–332. https://doi.org/10.5194/piahs-372-315-2015

    Article  Google Scholar 

  • Bitelli G, Roncari G, Tini MA, Vittuari L (2018) High-precision topographical methodology for determining height differences when crossing impassable areas. Measurement 118:147–155, ISSN 0263-2241. https://doi.org/10.1016/j.measurement.2018.01.013

    Article  Google Scholar 

  • Bjerrum L (1963) Allowable settlement of structures. In: Proceedings of European Conference on Soil Mechanics and Foundation Engineering, Discussion session IV, vol 2. Wiesbaden, Germany, pp 135–137

  • Brighenti G, Borgia GC, Mesini E (1995) Chapter 5 Subsidence studies in Italy. In: Chilingarian GV, Donaldson EC, Yen TF (eds) Developments in Petroleum Science, vol 41. Elsevier, pp 215–283, ISSN 0376-7361, ISBN 9780444818201. https://doi.org/10.1016/S0376-7361(06)80052-X

    Chapter  Google Scholar 

  • Bruno L, Amorosi A, Curina R, Severi P, Bitelli R (2013) Human–landscape interactions in the Bologna area (northern Italy) during the mid-late Holocene, with focus on the Roman period. Holocene 23:1560–1571

    Article  Google Scholar 

  • Bruno L, Marchi M, Bertolini I, Gottardi G, Amorosi A (2020) Climate control on stacked paleosols in the Pleistocene of the Po Basin (northern Italy). J Quat Sci 35:559–571. https://doi.org/10.1002/jqs.3199

    Article  Google Scholar 

  • Candela T, Koster K (2022) The many faces of anthropogenic subsidence. Science 376:1381–1382. https://doi.org/10.1126/science.abn3676

    Article  Google Scholar 

  • Carminati E, Di Donato G (1999) Separating natural and anthropogenic vertical movements in fast subsiding areas: the Po plain (N Italy) case. Geophys Res Lett 26:2291–2294

    Article  Google Scholar 

  • Carminati E, Martinelli G (2002) Subsidence rates in the Po Plain, northern Italy: the relative impact of natural and anthropogenic causation. Eng Geol 66:241–255

    Article  Google Scholar 

  • Castellarin A, Eva C, Giglia G, Vai GB, Rabbi E, Pini GA, Crestana G (1985) Analisi strutturale del fronte Appenninico Padano. Giorn Geol 47:47–75

    Google Scholar 

  • Chahoud A, Gelati L, Palumbo A, Patrizi G, Pellegrino I, Zaccanti G (2013) Groundwater flow model management and case studies in Emilia-Romagna (Italy). Acque Sotterranee Italian J Groundwater 2(1). https://doi.org/10.7343/as-019-13-0043

  • Chai JC, Shen SL, Zhu HH, Zhang XL (2005) 1D analysis of land subsidence in Shanghai. Lowl Technol Int 7(1):33–41 ISSN 1344-9656

    Google Scholar 

  • Chaussard E, Havazli E, Fattahi H, Cabral-Cano E, Solano-Rojas D (2021) Over a century of sinking in Mexico City: no hope for significant elevation and storage capacity recovery. J Geophys Res Solid Earth 126:e2020JB020648. https://doi.org/10.1029/2020JB020648

    Article  Google Scholar 

  • Costantini M, Minati F, Trillo F, Ferretti A, Novali F, Passera E, Dehls J, Larsen Y, Marinkovic P, Eineder M, Brcic R, Siegmund R, Kotzerke P, Probeck M, Kenyeres A, Proietti S, Solari L, Andresen HS, 2021. European Ground Motion Service (EGMS), IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021, 3293-3296, https://doi.org/10.1109/IGARSS47720.2021.9553562.

  • Crosetto M, Solari L, Balasis-Levinsen J, Bateson L, Casagli N, Frei M, Oyen A, Moldestad DA, Mróz M (2021) Deformation monitoring at European scale: the copernicus ground motion service, the international archives of the photogrammetry, remote sensing and spatial information sciences, XLIII-B3-2021, pp 141–146. https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-141-2021.

  • Das BM (1983) Advanced soil mechanics. Hemisphere Publishing Corporation and McGraw-Hill, New York, pp 1–511 ISBN 0-07-015416-3.

    Google Scholar 

  • De Caro M, Crosta GB, Previati A (2020) Modelling the interference of underground structures with groundwater flow and remedial solutions in Milan. Eng Geol 272:105652. 0013-7952. https://doi.org/10.1016/j.enggeo.2020.105652

    Article  Google Scholar 

  • Dehghani M, Valadan Zoej MJ, Entezam I, Mansourian A, Saatchi S (2009) InSAR monitoring of progressive land subsidence in Neyshabour, Northeast Iran. Geophys J Int 178:47–56

    Article  Google Scholar 

  • Du Z, Ge L, Ng AH-M, Zhu Q, Zhang Q, Kuang J, Dong J (2019) Long-term subsidence in Mexico City from 2004 to 2018 revealed by five synthetic aperture radar sensors. Land Degrad Dev 30:1785–1801. https://doi.org/10.1002/ldr.3347

    Article  Google Scholar 

  • Farolfi G, Del Soldato M, Bianchini S, Casagli N (2019) A procedure to use GNSS data to calibrate satellite PSI data for the study of subsidence: an example from the north-western Adriatic coast (Italy). Eur J Remote Sens 52(sup4):54–63. https://doi.org/10.1080/22797254.2019.1663710

    Article  Google Scholar 

  • Fernández-Torres E, Cabral-Cano E, Solano-Rojas D, Havazli E, Salazar-Tlaczani L (2020) Land subsidence risk maps and InSAR based angular distortion structural vulnerability assessment: an example in Mexico City. Proc Int Assoc Hydrol Sci 382:583–587. https://doi.org/10.5194/piahs-382-583-2020

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470. https://doi.org/10.1109/TGRS.2011.2124465

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20. https://doi.org/10.1109/36.898661

    Article  Google Scholar 

  • Foster S (2022) The key role for groundwater in urban water-supply security. J Water Clim Change 13(10):3566–3577. https://doi.org/10.2166/wcc.2022.174

    Article  Google Scholar 

  • Galloway DL, Burbey TJ (2011) Regional land subsidence accompanying groundwater extraction. Hydrogeol J 19(8):1459–1486

    Article  Google Scholar 

  • Galloway DL, Jones D, Ingebritsen SE (1999) Land subsidence in the United States, vol 1182. U.S. Geological Survey, Circular, p 185. https://doi.org/10.3133/cir1182

    Book  Google Scholar 

  • Gambolati G, Teatini P (2021) Land subsidence and its mitigation, Guelph, Ontario, Canada, p 92 ISBN: 978-1-77470-001-3, https://gw-project.org/books/land-subsidence-and-its-mitigation

    Book  Google Scholar 

  • Gambolati G, Teatini P, Ferronato M (2005) Anthropogenic land subsidence, Encyclopedia of hydrological sciences. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470848944.hsa164b

    Book  Google Scholar 

  • Giacomelli S, Zuccarini A, Amorosi A, Bruno L, Di Paola G, Severi P, Martini A, Berti M (2023) 3D geological modelling of the Bologna urban area (Italy). Eng Geol 324:107242, ISSN 0013-7952. https://doi.org/10.1016/j.enggeo.2023.107242

    Article  Google Scholar 

  • Haghighi MH, Motagh M (2019) Ground surface response to continuous compaction of aquifer system in Tehran, Iran: results from a long-term multi-sensor InSAR analysis. Remote Sens Environ 221:534–550, ISSN 0034-4257. https://doi.org/10.1016/j.rse.2018.11.003

    Article  Google Scholar 

  • He H, Xiao J, He J, Wei B, Ma X, Huang F, Cai X, Zhou Y, Bi J, Zhao Y, Wang C, Wei J (2023) Three-dimensional geological modeling of the shallow subsurface and its application: a case study in Tongzhou District, Beijing, China. Appl Sci 13:1932. https://doi.org/10.3390/app13031932

    Article  Google Scholar 

  • Herrera-García G, Ezquerro P, Tomás R, Béjar-Pizarro M, López-Vinielles J, Rossi M, Mateos RM, Carreón-Freyre D, Lambert J, Teatini P, Cabral-Cano E, Erkens G, Galloway D, Hung W, Kakar N, Sneed M, Tosi L, Wang H, Ye S (2021) Mapping the global threat of land subsidence. Science 371:34–36. https://doi.org/10.1126/science.abb8549

    Article  Google Scholar 

  • Kok S, Costa AL (2021) Framework for economic cost assessment of land subsidence. Nat Hazards 106:1931–1949. https://doi.org/10.1007/s11069-021-04520-3

    Article  Google Scholar 

  • Koster K, Stafleu J, Stouthamer E (2018) Differential subsidence in the urbanised coastal-deltaic plain of the Netherlands. Neth J Geosci 97(4):215–227. https://doi.org/10.1017/njg.2018.11

    Article  Google Scholar 

  • Lambe TW, Whitman RV (1969) Soil mechanics. John Wiley & Sons, New York

    Google Scholar 

  • Lixin Y, Jie W, Chuanqing S, Guo J, Yanxiang J, Liu B (2010) Land subsidence disaster survey and its economic loss assessment in Tianjin, China. Nat Hazards Rev 11(1):35–41. https://doi.org/10.1061/(ASCE)1527-6988(2010)11:1(35)

    Article  Google Scholar 

  • Luberti GM, Prestininzi A, Esposito C (2015) Development of a geological model useful for the study of the natural hazards in urban environments: an example from the eastern sector of Rome (Italy). Ital J Eng Geol Environ 15:41–62. https://doi.org/10.4408/IJEGE.2015-02.O-04

    Article  Google Scholar 

  • Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. Blackie Academic, EF Spon/Taylor & Francis Publ., N Y, p 312

    Google Scholar 

  • Mahmoudpour M, Khamehchiyan M, Nikudel MR, Ghassemi MR (2013) Characterization of regional land subsidence induced by groundwater withdrawals in Tehran, Iran. Geopersia 3(2):49–62. https://doi.org/10.22059/jgeope.2013.36014

    Article  Google Scholar 

  • Mahmoudpour M, Khamehchiyan M, Nikudel MR, Ghassemi MR (2016) Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Eng Geol 201:6–28. https://doi.org/10.1016/j.enggeo.2015.12.004

    Article  Google Scholar 

  • Miall AD (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci Rev 22(4):261–308. https://doi.org/10.1016/0012-8252(85)90001-7

    Article  Google Scholar 

  • Modoni G, Darini G, Spacagna RL, Saroli M, Russo G, Croce P (2013) Spatial analysis of land subsidence induced by groundwater withdrawal. Eng Geol 167:59–71. https://doi.org/10.1016/j.enggeo.2013.10.014

    Article  Google Scholar 

  • Ng AH, Ge L, Li X (2015) Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sens Environ 159:86–101. ISSN 0034-4257. https://doi.org/10.1016/j.rse.2014.12.003

    Article  Google Scholar 

  • Ochoa-González GH, Carreón-Freyre D, Franceschini A, Cerca M, Teatini P (2018) Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: a 3D deformation and stress analysis. Eng Geol 245:192–206. https://doi.org/10.1016/j.enggeo.2018.08.014

    Article  Google Scholar 

  • Ori GG (1993) Continental depositional systems of the Quaternary of the Po Plain (northern Italy). Sediment Geol 83:1–14. https://doi.org/10.1016/S0037-0738(10)80001-6

    Article  Google Scholar 

  • Peduto D, Korff M, Nicodemo G, Marchese A, Ferlisi S (2019) Empirical fragility curves for settlement-affected buildings: analysis of different intensity parameters for seven hundred masonry buildings in The Netherlands. Soils Found 59(2):380–397, ISSN 0038-0806. https://doi.org/10.1016/j.sandf.2018.12.009

    Article  Google Scholar 

  • Pieri L, Russo P (1980) Abbassamento del suolo della zona di Bologna: considerazioni sulle probabili cause e sulla metodologia per lo studio del fenomeno. In: Collana di orientamenti geomorfologici ed agronomico-forestali. Pitagora Editrice, Bologna

  • Pieri L, Russo P (1985) Situazione attuale delle ricerche sull’abbassamento del suolo nel territorio bolognese, vol 456. Inarcos, Bologna, pp 11–15

  • Pirouzi A, Eslami A (2017) Ground subsidence in plains around Tehran: site survey, records compilation and analysis. Int J Geo-Eng 8:30. https://doi.org/10.1186/s40703-017-0069-4

    Article  Google Scholar 

  • Prosperi A, Korswagen PA, Korff M, Schipper R, Rots JG (2023) Empirical fragility and ROC curves for masonry buildings subjected to settlements. J Build Eng 68:106094, ISSN 2352-7102. https://doi.org/10.1016/j.jobe.2023.106094

    Article  Google Scholar 

  • Ricci Lucchi F (1986) Oligocene to recent foreland basins of Northern Apennines. In: Homewood P (ed) Foreland basins, Allen. International Association of Sedimentologists, Special Publications, pp 105–139

    Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639. https://doi.org/10.1021/ac60214a047

    Article  Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea basin. J Geophys Res 85:3711–3739

    Article  Google Scholar 

  • Severi P (2021) Soil uplift in the Emilia-Romagna plain (Italy) by satellite radar interferometry. pp 527–542. https://doi.org/10.4430/bgta0349

  • Severi P, Bonzi L (2015) Gli acquiferi della pianura emiliano-romagnola. In: Farina M, Marcaccio M, Zavatti A (eds) Esperienze e prospettive nel monitoraggio delle acque sotterranee: Il contributo dell’Emilia-Romagna. Pitagora Editrice, Bologna, Italy, pp 19–34. https://doi.org/10.13140/RG.2.1.3927.2725

  • Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392. https://doi.org/10.1139/t11-049

    Article  Google Scholar 

  • Shirzaei M, Freymueller J, Törnqvist TE, Galloway DL, Dura T, Minderhoud PSJ (2021) Measuring, modelling and projecting coastal land subsidence. Nat Rev Earth Environ 2:40–58. https://doi.org/10.1038/s43017-020-00115-x

    Article  Google Scholar 

  • Skempton AW, MacDonald DH (1956) Allowable settlement of buildings. Proc Inst Civ Engrs Part III 5:727–768

    Google Scholar 

  • Stramondo S, Saroli M, Tolomei C, Moro M, Doumaz F, Pesci A, Loddo F, Baldi P, Boschi E (2007) Surface movements in Bologna (Po Plain — Italy) detected by multitemporal DInSAR. Remote Sens Environ 110:304–316. https://doi.org/10.1016/j.rse.2007.02.023

    Article  Google Scholar 

  • Taqwa FML, Hutabarat LE, Ilyas T, Prakoso WA (2019) Estimation of settlement induced land subsidence of marine clay on Kamal Muara Area, Northern Jakarta, based on the change of pore water pressure. J Phys Conf Ser 1376:012007. https://doi.org/10.1088/1742-6596/1376/1/012007

    Article  Google Scholar 

  • Tomlinson MJ (2001) Foundation design and construction. Pearson Education (US)

    Google Scholar 

  • Vanicek E, Krakiwsky P (1982) Geodesy: the concepts. North-Holland Publishing Co., Netherlands, p 1982

    Google Scholar 

  • Vázquez-Suñé E, Sánchez-Vila X, Carrera J (2005) Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol J 13:522–533. https://doi.org/10.1007/s10040-004-0360-2

    Article  Google Scholar 

  • Velasco V, Cabello P, Vázquez-Suñé E, López-Blanco M, Ramos E, Tubau I (2012) A sequence stratigraphic based geological model in the urbanized area of the Quaternary Besòs delta (NW Mediterranean coast, Spain). Geol Acta 10:373–393

    Google Scholar 

  • Viel G, Sangiorgi S, Zaccanti G (2005) L’acqua dei bolognesi. Il Geologo dell’Emilia-Romagna 21:7–32

    Google Scholar 

  • Ye S, Luo Y, Wu J, Teatini P, Wang H, Jiao X (2015) Three dimensional numerical modeling of land subsidence in Shanghai. Proc Int Assoc Hydrol Sci 372:443–448 https://piahs.copernicus.org/articles/372/443/2015

    Google Scholar 

  • Yousefi R, Talebbeydokhti N (2021) Subsidence monitoring by integration of time series analysis from different SAR images and impact assessment of stress and aquitard thickness on subsidence in Tehran, Iran. Environ Earth Sci 80. https://doi.org/10.1007/s12665-021-09714-3

  • Zhang Y, Huang H, Liu Y, Liu Y (2018) Self-weight consolidation and compaction of sediment in the Yellow River Delta, China. Phys Geogr 39(1):84–98. https://doi.org/10.1080/02723646.2017.1347420

    Article  Google Scholar 

  • Zhao Q, Ma G, Wang Q, Yang T, Liu M, Gao W, Falabella F, Mastro P, Pepe A (2019) Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: the case study of the Shanghai coastal area. ISPRS J Photogramm Remote Sens 154:10–27. ISSN 0924-2716. https://doi.org/10.1016/j.isprsjprs.2019.05.005

    Article  Google Scholar 

  • Zhu L, Franceschini A, Gong H, Ferronato M, Dai Z, Ke Y, Pan Y, Li X, Wang R, Teatini P (2020) The 3-D facies and geomechanical modeling of land subsidence in the Chaobai plain, Beijing. Water Resour Res 56. https://doi.org/10.1029/2019WR027026

Download references

Funding

This study was supported by the research grant URGENT — Urban Geology and Geohazards: Engineering geology for safer, resilieNt and smart ciTies funded by the Italian Government (Progetti di Ricerca di Rilevante Interesse Nazionale, PRIN2017, Prot. 2017HPJLPW).

This study was carried out within the RETURN Extended Partnership and received funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan — NRRP, Mission 4, Component 2, Investment 1.3 — D.D. 1243 2/8/2022, PE0000005.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Matteo Berti and Alessandro Zuccarini; data collection and material preparation: Alessandro Zuccarini, Paolo Severi and Serena Giacomelli; methodology: Matteo Berti and Alessandro Zuccarini; formal analysis and investigation: Alessandro Zuccarini and Matteo Berti; writing — original draft preparation: Alessandro Zuccarini; writing — review and editing: Matteo Berti, Serena Giacomelli and Paolo Severi; funding acquisition: Matteo Berti; resources: Matteo Berti; supervision: Matteo Berti. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Zuccarini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuccarini, A., Giacomelli, S., Severi, P. et al. Long-term spatiotemporal evolution of land subsidence in the urban area of Bologna, Italy. Bull Eng Geol Environ 83, 35 (2024). https://doi.org/10.1007/s10064-023-03517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-023-03517-5

Keywords

Navigation