Skip to main content

Advertisement

Log in

Dem-Aging: autophagy-related pathologies and the “two faces of dementia”

  • Short Communication
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Neuronal ceroid lipofuscinosis (NCL) is an umbrella term referring to the most frequent childhood-onset neurodegenerative diseases, which are also the main cause of childhood dementia. Although the molecular mechanisms underlying the NCLs remain elusive, evidence is increasingly pointing to shared disease pathways and common clinical features across the disease forms. The characterization of pathological mechanisms, disease modifiers, and biomarkers might facilitate the development of treatment strategies.

The DEM-AGING project aims to define molecular signatures in NCL and expedite biomarker discovery with a view to identifying novel targets for monitoring disease status and progression and accelerating clinical trial readiness in this field. In this study, we fused multiomic assessments in established NCL models with similar data on the more common late-onset neurodegenerative conditions in order to test the hypothesis of shared molecular fingerprints critical to the underlying pathological mechanisms. Our aim, ultimately, is to combine data analysis, cell models, and omic strategies in an effort to trace new routes to therapies that might readily be applied in the most common forms of dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Data will be made available on request at sdoccini@fsm.unipi.it.

References

  1. Simonati A, Williams RE (2022) Neuronal ceroid lipofuscinosis: the multifaceted approach to the clinical issues, an overview. Front Neurol 13:811686

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schulz A, Kohlschütter A (2013) NCL disorders: frequent causes of childhood dementia. Iran J Child Neurol 7:1–8

    PubMed  PubMed Central  Google Scholar 

  3. Zhu Y, Runwal G, Obrocki P, Rubinsztein DC (2019) Autophagy in childhood neurological disorders. Dev Med Child Neurol 61:639–645

    Article  PubMed  Google Scholar 

  4. Schulz A, Ajayi T, Specchio N, de Los RE, Gissen P, Ballon D et al (2018) Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med 378:1898–1907

    Article  CAS  PubMed  Google Scholar 

  5. Doccini S, Morani F, Nesti C, Pezzini F, Calza G, Soliymani R et al (2020) Proteomic and functional analyses in disease models reveal CLN5 protein involvement in mitochondrial dysfunction. Cell Death Discov 6:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doccini S, Marchese M, Morani F, Gammaldi N, Mero S, Pezzini F et al (2022) Lysosomal proteomics links disturbances in lipid homeostasis and sphingolipid metabolism to CLN5 disease. Cells 11:1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ (2022) Autophagy in the neuronal ceroid lipofuscinoses (Batten disease). Front Cell Dev Biol 10:812728

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD (2020) Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 1866:165570

    Article  CAS  PubMed  Google Scholar 

  9. Hamano T, Hayashi K, Shirafuji N, Nakamoto Y (2018) The implications of autophagy in Alzheimer’s disease. Curr Alzheimer Res 15:1283–1296

    Article  CAS  PubMed  Google Scholar 

  10. Kumar A, Dhawan A, Kadam A, Shinde A (2018) Autophagy and mitochondria: targets in neurodegenerative disorders. CNS Neurol Disord Drug Targets 17:696–705

    Article  CAS  PubMed  Google Scholar 

  11. Mariño G, López-Otín C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M (2017) Autophagy, its mechanisms and regulation: implications in neurodegenerative diseases. Ageing Res Rev 40:64–74

    Article  CAS  PubMed  Google Scholar 

  13. Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ (2012) Mutation of the Parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis”. Hum Mol Genet 21:2646–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Canafoglia L, Morbin M, Scaioli V, Pareyson D, D’Incerti L, Fugnanesi V, Tagliavini F, Berkovic SF, Franceschetti S (2014) Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia 55:56–59

    Article  Google Scholar 

  15. Geier EG, Bourdenx M, Storm NJ, Cochran JN, Sirkis DW, Hwang JH et al (2019) Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol 137:71–88

    Article  CAS  PubMed  Google Scholar 

  16. Qureshi YH, Patel VM, Berman DE, Kothiya MJ, Neufeld JL, Vardarajan B et al (2018) An Alzheimer’s disease-linked loss-of-function CLN5 variant impairs cathepsin D maturation, consistent with a retromer trafficking defect. Mol Cell Biol 38:e00011-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M et al (2017) Proteomic analysis of brain and cerebrospinal fluid from the three major forms of neuronal ceroid lipofuscinosis reveals potential biomarkers. J Proteome Res 16:3787–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huber RJ (2021) Altered protein secretion in Batten disease. Dis Model Mech 14:dmm049152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kline RA, Wishart TM, Mills K, Heywood WE (2020) Applying modern omic technologies to the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 1866:165498

    Article  CAS  PubMed  Google Scholar 

  21. Best HL, Clare AJ, McDonald KO, Wicky HE, Hughes SM (2021) An altered secretome is an early marker of the pathogenesis of CLN6 Batten disease. J Neurochem 157:764–780

    Article  CAS  PubMed  Google Scholar 

  22. Hersrud SL, Geraets RD, Weber KL, Chan CH, Pearce DA (2016) Plasma biomarkers for neuronal ceroid lipofuscinosis. FEBS J 283:459–471

    Article  CAS  PubMed  Google Scholar 

  23. Sleat DE, Wiseman JA, El-Banna M, Zheng H, Zhao C, Soherwardy A, Moore DF, Lobel P (2019) Analysis of brain and cerebrospinal fluid from mouse models of the three major forms of neuronal ceroid lipofuscinosis reveals changes in the lysosomal proteome. Mol Cell Proteomics 18:2244–2261

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen H, Chen F, Zhang M, Chen Y, Cui L, Liang C (2021) A review of APOE genotype-dependent autophagic flux regulation in Alzheimer’s disease. J Alzheimers Dis 84:535–555

    Article  CAS  PubMed  Google Scholar 

  25. Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G (2022) ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 110:1304–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Williams T, Borchelt DR, Chakrabarty P (2020) Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Mol Neurodegener 15:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lyly A, Marjavaara SK, Kyttälä A, Uusi-Rauva K, Luiro K, Kopra O et al (2008) Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Hum Mol Genet 17:1406–1417

    Article  CAS  PubMed  Google Scholar 

  28. Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ (2019) Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front Neurosci 13:164

    Article  PubMed  PubMed Central  Google Scholar 

  29. Satapathy S, Wilson MR (2021) The dual roles of clusterin in extracellular and intracellular proteostasis. Trends Biochem Sci 46:652–660

    Article  CAS  PubMed  Google Scholar 

  30. Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C (2021) Clusterin: always protecting. Synthesis, function and potential issues. Biomed Pharmacother 134:111

    Article  Google Scholar 

  31. Di YQ, Han XL, Kang XL, Wang D, Chen CH, Wang JX, Zhao XF (2021) Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy 17:1170–1192

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Liu Z, Chen J, Yi J, Cheng J, Dun W, Wei H (2018) Resveratrol induces autophagic apoptosis via the lysosomal cathepsin D pathway in human drug-resistant K562/ADM leukemia cells. Exp Ther Med 15:3012–3019

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Letronne F, Laumet G, Ayral AM, Chapuis J, Demiautte F, Laga M et al (2016) ADAM30 downregulates APP-linked defects through cathepsin D activation in Alzheimer’s disease. EBioMedicine 9:278–292

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim JW, Jung SY, Kim Y, Heo H, Hong CH, Seo SW, Choi SH, Son SJ, Lee S, Chang J (2021) Identification of cathepsin d as a plasma biomarker for Alzheimer’s disease. Cells 10:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huber RJ (2017) Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium. Cell Signal 35:61–72

    Article  CAS  PubMed  Google Scholar 

  36. Huber RJ, Mathavarajah S (2019) Comparative transcriptomics reveals mechanisms underlying Cln3-deficiency phenotypes in Dictyostelium. Cell Signal 58:79–90

    Article  CAS  PubMed  Google Scholar 

  37. Bajaj L, Sharma J, di Ronza A, Zhang P, Eblimit A, Pal R, Roman D et al (2020) A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. J Clin Invest 130:4118–4132

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Heller C, Foiani MS, Moore K, Convery R, Bocchetta M, Neason M et al (2020) Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J Neurol Neurosurg Psychiatry 91:263–270

    Article  PubMed  Google Scholar 

  39. Pereira JB, Janelidze S, Smith R, Mattsson-Carlgren N, Palmqvist S, Teunissen CE et al (2021) Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain 144:3505–3516

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhu N, Santos-Santos M, Illán-Gala I, Montal V, Estellés T, Barroeta I et al (2021) Plasma glial fibrillary acidic protein and neurofilament light chain for the diagnostic and prognostic evaluation of frontotemporal dementia. Transl Neurodegener 10:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan W, Lu L, Rao M, Huang Y, Liu CE, Liu S et al (2021) GFAP hyperpalmitoylation exacerbates astrogliosis and neurodegenerative pathology in PPT1-deficient mice. Proc Natl Acad Sci U S A 118:e2022261118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Domowicz MS, Chan WC, Claudio-Vázquez P, Henry JG, Ware CB, Andrade J, Dawson G, Schwartz NB (2019) Global brain transcriptome analysis of a Tpp1 neuronal ceroid lipofuscinoses mouse model. ASN Neuro 11:1759091419843393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu S, Sleat DE, Jadot M, Lobel P (2010) Glial fibrillary acidic protein is elevated in the lysosomal storage disease classical late-infantile neuronal ceroid lipofuscinosis, but is not a component of the storage material. Biochem J 428:355–362

    Article  CAS  PubMed  Google Scholar 

  44. Drobny A, Prieto Huarcaya S, Dobert J, Kluge A, Bunk J, Schlothauer T, Zunke F (2022) The role of lysosomal cathepsins in neurodegeneration: mechanistic insights, diagnostic potential and therapeutic approaches. Biochim Biophys Acta Mol Cell Res 1869:119243

    Article  CAS  PubMed  Google Scholar 

  45. Runfola M, Perni M, Yang X, Marchese M, Bacci A, Mero S et al (2021) Identification of a thyroid hormone derivative as a pleiotropic agent for the treatment of Alzheimer’s disease. Pharmaceuticals (Basel) 14:1330

    Article  CAS  PubMed  Google Scholar 

  46. Agostini M, Amato F, Vieri ML, Greco G, Tonazzini I, Baroncelli L et al (2021) Glial-fibrillary-acidic-protein (GFAP) biomarker detection in serum-matrix: functionalization strategies and detection by an ultra-high-frequency surface-acoustic-wave (UHF-SAW) lab-on-chip. Biosens Bioelectron 172:112774

    Article  CAS  PubMed  Google Scholar 

  47. Fountzilas E, Tsimberidou AM, Vo HH, Kurzrock R (2022) Clinical trial design in the era of precision medicine. Genome Med 14:101

    Article  PubMed  PubMed Central  Google Scholar 

  48. Samuel JP, Wootton SH, Holder T, Molony D (2022) A scoping review of randomized trials assessing the impact of n-of-1 trials on clinical outcomes. PLoS ONE 17:e0269387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C.J. Wrenn for editorial assistance. M.M. is the holder of the Telethon Career Award. N.G. holds a PhD fellowship in neuroscience, University of Florence, Italy. AS is a member of the European Reference Network MetabERN. Members of the DEM-AGING network are listed in Supplementary table S3.

Funding

This research project is funded by: Regione Toscana (Bando Ricerca Salute 2018, project DEM AGING), by the Italian Ministry of Health, Ricerca Corrente2023 e RC 5 × 1000 (to S.D. and F.M.S.), and Ricerca Finalizzata 2018, Starting Grant (SG-2018–12367839) (to M.M.), and by a Telethon Foundation (grant GGP20011) to M.M.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S. Doccini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gammaldi, N., Doccini, S., Bernardi, S. et al. Dem-Aging: autophagy-related pathologies and the “two faces of dementia”. Neurogenetics 25, 39–46 (2024). https://doi.org/10.1007/s10048-023-00739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-023-00739-3

Keywords

Navigation