Skip to main content
Log in

“Deep-media culture condition” promoted lumen formation of endothelial cells within engineered three-dimensional tissues in vitro

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

In the field of tissue engineering, the induction of microvessels into tissues is an important task because of the need to overcome diffusion limitations of oxygen and nutrients within tissues. Powerful methods to create vessels in engineered tissues are needed for creating real living tissues. In this study, we utilized three-dimensional (3D) highly cell dense tissues fabricated by cell sheet technology. The 3D tissue constructs are close to living-cell dense tissue in vivo. Additionally, creating an endothelial cell (EC) network within tissues promoted neovascularization promptly within the tissue after transplantation in vivo. Compared to the conditions in vivo, however, common in vitro cell culture conditions provide a poor environment for creating lumens within 3D tissue constructs. Therefore, for determining adequate conditions for vascularizing engineered tissue in vitro, our 3D tissue constructs were cultured under a “deep-media culture conditions.” Compared to the control conditions, the morphology of ECs showed a visibly strained cytoskeleton, and the density of lumen formation within tissues increased under hydrostatic pressure conditions. Moreover, the increasing expression of vascular endothelial cadherin in the lumens suggested that the vessels were stabilized in the stimulated tissues compared with the control. These findings suggested that deep-media culture conditions improved lumen formation in engineered tissues in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

EC:

Endothelial cell

SMC:

Smooth muscle cell

References

  1. L’Heureux N, McAllister T, de la Fuente L. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med. 2007;357:1451–3.

    Article  PubMed  Google Scholar 

  2. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351:1187–96.

    Article  PubMed  CAS  Google Scholar 

  3. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.

    Article  PubMed  CAS  Google Scholar 

  4. Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–3.

    Article  PubMed  Google Scholar 

  5. Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res. 1993;27:1243–51.

    Article  PubMed  CAS  Google Scholar 

  6. Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res. 1999;45:355–62.

    Article  PubMed  CAS  Google Scholar 

  7. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002;90:e40.

    Article  PubMed  CAS  Google Scholar 

  8. Lokmic Z, Mitchell G. Engineering the microcirculation. Tissue Eng Part B Rev. 2008;14:87–103.

    Article  PubMed  CAS  Google Scholar 

  9. Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T. Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun. 2006;341:573–82.

    Article  PubMed  CAS  Google Scholar 

  10. Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 2006;20:708–10.

    PubMed  CAS  Google Scholar 

  11. Bagi Z, Frangos J, Yeh J, White C, Kaley G, Koller A. PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress. Arterioscler Thromb Vasc Biol. 2005;25:1590–5.

    Article  PubMed  CAS  Google Scholar 

  12. Goettsch W, Gryczka C, Korff T, Ernst E, Goettsch C, Seebach J, Schnittler H, Augustin H, Morawietz H. Flow-dependent regulation of angiopoietin-2. J Cell Physiol. 2008;214:491–503.

    Article  PubMed  CAS  Google Scholar 

  13. Joung I, Iwamoto M, Shiu Y, Quam C. Cyclic strain modulates tubulogenesis of endothelial cells in a 3D tissue culture model. Microvasc Res. 2006;71:1–11.

    Article  PubMed  Google Scholar 

  14. Müller-Marschhausen K, Waschke J, Drenckhahn D. Physiological hydrostatic pressure protects endothelial monolayer integrity. Am J Physiol Cell Physiol 2008;294:C324–32.

    Google Scholar 

  15. Li Y, Haga J, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.

    Article  PubMed  Google Scholar 

  16. Acevedo A, Bowser S, Gerritsen M, Bizios R. Morphological and proliferative responses of endothelial cells to hydrostatic pressure: role of fibroblast growth factor. J Cell Physiol. 1993;157:603–14.

    Article  PubMed  CAS  Google Scholar 

  17. Akbal C, Lee S, Jung C, Rink R, Kaefer M. Upregulation of both PDGF-BB and PDGF-BB receptor in human bladder fibroblasts in response to physiologic hydrostatic pressure. J Pediatr Urol. 2006;2:402–8.

    Article  PubMed  Google Scholar 

  18. Hirschi K, Rohovsky S, Beck L, Smith S, D’Amore P. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res. 1999;84:298–305.

    PubMed  CAS  Google Scholar 

  19. Ohashi T, Sugaya Y, Sakamoto N, Sato M. Hydrostatic pressure influences morphology and expression of VE-cadherin of vascular endothelial cells. J Biomech. 2007;40:2399–405.

    Article  PubMed  Google Scholar 

  20. Salwen SA, Szarowski DH, Turner JN, Bizios R. Three-dimensional changes of the cytoskeleton of vascular endothelial cells exposed to sustained hydrostatic pressure. Med Biol Eng Comput. 1998;36:520–7.

    Article  PubMed  CAS  Google Scholar 

  21. Schwartz EA, Bizios R, Medow MS, Gerritsen ME. Exposure of human vascular endothelial cells to sustained hydrostatic pressure stimulates proliferation. Involvement of the alphaV integrins. Circ Res. 1999;84:315–22.

    PubMed  CAS  Google Scholar 

  22. Mammoto A, Mammoto T, Ingber D. Rho signaling and mechanical control of vascular development. Curr Opin Hematol. 2008;15:228–34.

    Article  PubMed  CAS  Google Scholar 

  23. Tan W, Palmby T, Gavard J, Amornphimoltham P, Zheng Y, Gutkind J. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 2008;22:1829–38.

    Article  PubMed  CAS  Google Scholar 

  24. Mammoto T, Parikh S, Mammoto A, Gallagher D, Chan B, Mostoslavsky G, Ingber D, Sukhatme V. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J Biol Chem. 2007;282:23910–8.

    Article  PubMed  CAS  Google Scholar 

  25. Carmeliet P, Lampugnani M, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B. Dewerchin M and others. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999;98:147–57.

    Article  PubMed  CAS  Google Scholar 

  26. Kashiwagi S, Izumi Y, Gohongi T, Demou Z, Xu L, Huang P, Buerk D, Munn L, Jain R, Fukumura D. NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest. 2005;115:1816–27.

    Article  PubMed  CAS  Google Scholar 

  27. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92:5510–4.

    Article  PubMed  CAS  Google Scholar 

  28. Gardner LB, Corn PG. Hypoxic regulation of mRNA expression. Cell Cycle. 2008;7:1916–24.

    Article  PubMed  CAS  Google Scholar 

  29. Dvir T, Benishti N, Shachar M, Cohen S. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng. 2006;12:2843–52.

    Article  PubMed  CAS  Google Scholar 

  30. Schulz R, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J. 2007;36:539–68.

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe S, Inagaki S, Kinouchi I, Takai H, Masuda Y, Mizuno S. Hydrostatic pressure/perfusion culture system designed and validated for engineering tissue. J Biosci Bioeng. 2005;100:105–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Japanese High-Tech Research Center Program grants. We thank Dr. N. Ueno for language corrections in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachiko Sekiya or Teruo Okano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekiya, S., Shimizu, T., Yamato, M. et al. “Deep-media culture condition” promoted lumen formation of endothelial cells within engineered three-dimensional tissues in vitro. J Artif Organs 14, 43–51 (2011). https://doi.org/10.1007/s10047-011-0553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-011-0553-0

Keywords

Navigation