Skip to main content
Log in

Design of an intravenous oxygenator

  • ORIGINAL ARTICLE
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The aim of this study was to design a new intravenous blood–gas exchange device and to estimate the design characteristics of the device with a dimensionless function by using a substance that can be used instead of bovine blood. In addition, the characteristics of oxygen transfer were estimated using empirical formulas and the reliability of the equations was ascertained by comparing their output with an experiment performed using bovine blood. The dimensionless function was derived using distilled water and bovine blood to estimate the oxygen transfer rate. Using the derived equations, the calculated oxygen transfer rates for bovine blood and distilled water were similar for Reynolds numbers ranging from 0.7 to 7.0. Therefore, it is possible to estimate the oxygen transfer rate in bovine blood, which is a non-Newtonian fluid, using distilled water, which is a Newtonian fluid. Moreover, it was possible to verify the related equations because the oxygen transfer rate could be estimated using the derived equations, according to the diameters of the various device modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RH Bartlett DW Roloff RG Cornell AF Andrews PW Dillon AB Zwischenberger (1985) ArticleTitleExtracorporeal circulation in neonatal respiratory failure: a prospective randomized study Pediatrics 4 479–487

    Google Scholar 

  2. GD Pearson BL Short (1986) ArticleTitleAn economic analysis of extracorporeal membrane oxygenation J Intensive Care Med 2 116–120

    Google Scholar 

  3. Finder NN, Tierney AJ, Hallgren R, Hayashi A, Peliowski A, Etches PC. Neonatal congenital diaphragmatic hernia and extracorporeal membrane oxygenation. Can Med Assoc J 1992;146–501

  4. TG Campell (1994) ArticleTitleChanging criteria for the artificial lung: historic controls on the technology of ECMO ASAIO J 40 109–120

    Google Scholar 

  5. WJ Federspiel MS Hout TJ Hewitt LW Lund SA Heinrich P Litwak FR Walters GD Reeder HS Borovetz BG Hattler (1997) ArticleTitleDevelopment of a low-flow-resistance intravenous oxygenator ASAIO J 43 M725–M730 Occurrence Handle1:STN:280:DyaK1c%2FisVCmug%3D%3D Occurrence Handle9360141

    CAS  PubMed  Google Scholar 

  6. TJ Hewitt BG Hattler WJ Federspiel (1998) ArticleTitleA mathematical model of gas exchange in an intravenous membrane oxygenator Ann Biomed Eng 26 166–178 Occurrence Handle10.1114/1.53 Occurrence Handle1:STN:280:DyaK1M3otFKqsA%3D%3D Occurrence Handle10355561

    Article  CAS  PubMed  Google Scholar 

  7. SN Vaslef LF Mockros RW Anderson (1989) ArticleTitleDevelopment of an intravascular lung assist device Trans Am Soc Artif Intern Organs 35 660–664 Occurrence Handle1:STN:280:By%2BD1cbitFc%3D

    CAS  Google Scholar 

  8. WJ Federspiel TJ Hewitt MS Hout FR Walters (1996) ArticleTitleRecent progress in engineering the Pittsburgh intravenous membrane oxygenator ASAIO J 42 M435–M442 Occurrence Handle1:STN:280:ByiB3cnpsVI%3D Occurrence Handle9063960

    CAS  PubMed  Google Scholar 

  9. WJ Federspiel JL William BG Hattler (1996) ArticleTitleGas flow dynamics in hollow-fiber membranes AIChE J 42 IssueID7 2094–2099 Occurrence Handle10.1002/aic.690420732 Occurrence Handle1:CAS:528:DyaK28XksVajsro%3D

    Article  CAS  Google Scholar 

  10. SN Vaslef KE Cook RJ Leonard LF Mockros RW Anderson (1004) ArticleTitleDesign and evaluation of a new, low-pressure-loss, implantable artificial lung ASAIO J 40 M522–M526

    Google Scholar 

  11. V Nodelman H Baskaran JS Ultman (1998) ArticleTitleEnhancement of O2 and CO2 transfer through microporous hollow fiber by pressure cycling Ann Biomed Eng 26 1044–1054 Occurrence Handle10.1114/1.115 Occurrence Handle1:STN:280:DyaK1M%2FmtFequw%3D%3D Occurrence Handle9846942

    Article  CAS  PubMed  Google Scholar 

  12. WJ Federspiel LW Lund JA Bultman S Wanant J Matoney JF Golob BJ Frankowski M Watach P Litwak BG Hattler (1999) ArticleTitleEx-vivo testing of the intravenous membrane oxygenator (IMO) ASAIO J 45 127

    Google Scholar 

  13. KB Kim SC Lee SC Hong MH Kim GR Jheong (2000) ArticleTitleThe evaluation of artificial lung using blood substitutes, J Biomed Eng Res 21 IssueID3 311–320

    Google Scholar 

  14. JD Mortensen (1987) ArticleTitleAn intravenacaval blood gas exchange (IVCBGE) device: a preliminary report Trans Am Soc Artif Intern Organs 33 570–573 Occurrence Handle1:STN:280:BieD2M%2FjtVM%3D

    CAS  Google Scholar 

  15. JD Mortensen (1992) ArticleTitleIntravascular oxygenator: a new alternative method for augmenting blood gas transfer in patients with acute respiratory failure Artif Organs 16 75–82 Occurrence Handle1:STN:280:ByyB3snkslM%3D Occurrence Handle1300104

    CAS  PubMed  Google Scholar 

  16. SN Vaslef LF Mockros KE Cook RJ Leonard JC Sung RW Anderson (1994) ArticleTitleComputer-assisted design of an implantable intrathoracic artificial lung Artif Organs 18 IssueID11 813–817 Occurrence Handle1:STN:280:ByqC28fps1w%3D Occurrence Handle7864729

    CAS  PubMed  Google Scholar 

  17. GB Kim TK Kwon SC Lee SJ Kim IS Cheong IH Oh KJ Kim YS Byun GR Jheong (2004) ArticleTitleCharacteristics of oxygen transfer in intravenous lung assist device by vibrating Korean Chem Eng Res 42 IssueID2 151–162 Occurrence Handle1:CAS:528:DC%2BD2cXksVejtro%3D

    CAS  Google Scholar 

  18. GB Kim SJ Kim CU Hong TK Kwon NG Kim (2005) ArticleTitleEnhancement of oxygen transfer in hollow fiber membrane by the vibration method Korean J Chem Eng 22 IssueID4 521–527 Occurrence Handle1:CAS:528:DC%2BD2MXhtFSntLvI

    CAS  Google Scholar 

  19. S Katoh F Yoshida (1972) ArticleTitleRate of blood oxygenation in flat plate membrane oxygenator Chem Eng J 3 51–58

    Google Scholar 

  20. WL McCabe JC Smith P Harriott (1993) Unit operations of chemical engineering EditionNumber5th ed. McGraw-Hill New York

    Google Scholar 

  21. VL Streeter EB Wylie K Bedford (1998) Fluid Mechanics EditionNumber9th ed. McGraw-Hill New York

    Google Scholar 

  22. M Mulder (1996) Basic Principles of Membrane Technology Kluwer Boston

    Google Scholar 

  23. WL Beek KMK Muttzell JW van Heuven (1999) Transport Phenomena EditionNumber2th ed. Wiley Singapore

    Google Scholar 

  24. RB Bird WE Stewart EN Lightfoot (2002) Transport Phenomena EditionNumber2th ed. Wiley New York

    Google Scholar 

  25. SR Wickramasinghe CM Kahr B Han (2002) ArticleTitleMass transfer in blood oxygenators using blood analogue fluids Biotechnol Prog 18 867 Occurrence Handle10.1021/bp010192h Occurrence Handle1:CAS:528:DC%2BD38Xkt1aitro%3D Occurrence Handle12153323

    Article  CAS  PubMed  Google Scholar 

  26. GB Kim JK Park TK Kwon SC Hong GR Jheong SC Lee (2002) ArticleTitleCharacteristics of pressure drop and oxygen transfer in actuate hollow fiber membrane modules Theories Appl Chem Eng 2 IssueID2 5070–5073

    Google Scholar 

  27. GB Kim TK Kwon GR Jheong SC Lee (2003) ArticleTitleGas transfer and hemolysis characteristics of a new type intravenous lung assist device J Biomed Eng Res 24 IssueID2 121–126

    Google Scholar 

  28. GB Kim TK Kwon JK Park GR Jheong SC Lee (2003) ArticleTitleEvaluation on the characteristics of pressure drop for the design of intravascular articial lung assist device Membr J 13 IssueID1 20–28 Occurrence Handle1:CAS:528:DC%2BD3sXjt1ejsLs%3D

    CAS  Google Scholar 

  29. GB Kim TK Kwon GR Jheong (2003) ArticleTitleStudy on the modeling technique for prediction about pressure drop of an intravenous lung assist device J Biomed Eng Res 24 IssueID4 293–299

    Google Scholar 

  30. AAMI Standard: Cardiovascular/neurology standards for blood/gas exchanger devices (oxygenators). August 14, 1998

  31. ISO/DIS International Standard 7199: Cardiovascular implantants and artificial organs-blood-gas exchangers, 1996

  32. PW Dierickx F De Somer DS De Wachter G Van Nooten PR Verdonck (2000) ArticleTitleHydrodynamic characteristics of an artificial lung ASAIO J 46 532 Occurrence Handle1:STN:280:DC%2BD3cvmtlKksw%3D%3D Occurrence Handle11016501

    CAS  PubMed  Google Scholar 

  33. SC Lee KB Kim (2002) ArticleTitleLiquid flow and pressure drop of an outside-flow membrane oxygenator with hollow fibers J Biomed Eng Res 23 IssueID1 27–31 Occurrence Handle1:CAS:528:DC%2BD38Xls1Ojtrc%3D

    CAS  Google Scholar 

  34. Vaslef SN. Analysis and designs of an intravascular lung assist device, Ph.D. Dissertation, Ann Arbor 1990

  35. HL de Medina (2000) Chemical parameters LML Nollet (Eds) Handbook of water analysis Marcel Dekker New York 51–74

    Google Scholar 

  36. SN Vaslef RW Anderson (2002) The artificial lung Landes Bioscience Austin

    Google Scholar 

  37. Ciuryla VT. Oxygen diffusion in human blood plasma, Ph.D. Dissertation, Northwestern University, Ann Arbor, 1971

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Beum Kim PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, GB., Kwon, TK. & Hung, CU. Design of an intravenous oxygenator. J Artif Organs 9, 34–41 (2006). https://doi.org/10.1007/s10047-005-0312-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-005-0312-1

Key words

Navigation