Skip to main content
Log in

Tunable terahertz plasmonic planar lens based on InSb micro-slit array

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A plasmonic planar lens operating at terahertz (THz) region based on InSb micro-slit array with varying dielectric slit width is designed and numerically investigated. Dielectric slits provide desired phase retardations of beam manipulating with varying phase propagation constant. Taking advantage of the permittivity thermo-tunable property of InSb, the focal spot of this lens can be actively controlled by altering temperature without needing to change the geometry of the device. Furthermore, the focal spot can move along the vertical direction in the focus area by properly choosing the medium filled in the micro-slits. This ultracompact and focal spot tunable planar plasmonic lens may find potential important applications in the imaging, signal processing, and microprobes for THz system and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)

    Article  ADS  Google Scholar 

  2. Ferguson, B., Zhang, X.C.: Materials for terahertz science and technology. Nat Mater 1(1), 26–33 (2002)

    Article  ADS  Google Scholar 

  3. Fischer, B.M., et al.: Terahertz time-domain spectroscopy and imaging of artificial RNA. Opt. Express 13(14), 5205 (2005)

    Article  ADS  Google Scholar 

  4. Diem, M., Koschny, T., Soukoulis, C.M.: Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B (2009). https://doi.org/10.1103/PhysRevB.79.033101

    Article  Google Scholar 

  5. Kleine-Ostmann, T., et al.: Room-temperature operation of an electrically driven terahertz modulator. Appl. Phys. Lett. 84(18), 3555 (2004)

    Article  ADS  Google Scholar 

  6. Khan, M.J., Chen, J.C., Kaushik, S.: Optical detection of terahertz radiation by using nonlinear parametric upconversion. Opt. Lett. 32(22), 3248 (2007)

    Article  ADS  Google Scholar 

  7. Wang, B.-X., et al.: Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technol. Lett. 26(2), 111–114 (2014)

    Article  ADS  Google Scholar 

  8. Bian, Y., Gong, Q.: Long-range hybrid ridge and trench plasmonic waveguides. Appl Physics Lett 104(25), 251115 (2014)

    Article  ADS  Google Scholar 

  9. Lu, H., et al.: Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 23(44), 444003 (2012)

    Article  Google Scholar 

  10. Li, G., Sun, Y., Wang, S.: Spin-independent plasmonic lens. Nanoscale Res Lett 14(1), 156 (2019)

    Article  ADS  Google Scholar 

  11. Zhong, S., et al.: Giant power enhancement for quasi-omnidirectional light radiation via epsilon-near-zero materials. Opt Express 26(3), 2231–2241 (2018)

    Article  ADS  Google Scholar 

  12. Zhang, Z., et al.: Metasurface lens with angular modulation for extended depth of focus imaging. Opt Lett 45(3), 611–614 (2020)

    Article  ADS  Google Scholar 

  13. Zhang, Z., et al.: Multifunctional light sword metasurface lens. ACS Photonics 5(5), 1794–1799 (2018)

    Article  Google Scholar 

  14. Chen, J., et al.: Plasmonic sensing and modulation based on fano resonances. Adv Opt Mat 6(9), 1701152 (2018)

    Article  Google Scholar 

  15. Zhang, G., et al.: Brightening and guiding single-photon emission by plasmonic waveguide-slit structures on a metallic substrate. Laser Photonics Rev 13(10), 1900025 (2019)

    Article  ADS  Google Scholar 

  16. Esmann, M., et al.: Plasmonic nanofocusing spectral interferometry. Nanophotonics 9(2), 491–508 (2020)

    Article  Google Scholar 

  17. Lu, F., et al.: Tip-based plasmonic nanofocusing: vector field engineering and background elimination. IEEE J. Sel. Top. Quantum Electron. 27(1), 1–12 (2021)

    Article  Google Scholar 

  18. Gu, P., et al.: 3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing. Nanoscale 11(8), 3583–3590 (2019)

    Article  Google Scholar 

  19. Hu, B., Wang, Q.J., Zhang, Y.: Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons. Opt Lett 37(11), 1895–1897 (2012)

    Article  ADS  Google Scholar 

  20. Li, W., et al.: Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure. Appl Opt 51(29), 7098–7102 (2012)

    Article  ADS  Google Scholar 

  21. Yan, F., et al.: Ultrasensitive tunable terahertz sensor with graphene plasmonic grating. J. Lightwave Technol. 37(4), 1103–1112 (2019)

    Article  ADS  Google Scholar 

  22. Yang, C., et al.: Terahertz planar lenses based on plasmonic metasurfaces. Phys. Lett. A 383(8), 789–792 (2019)

    Article  ADS  Google Scholar 

  23. Sánchez-Gil, J., Rivas, J.: Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces. Phys Rev B (2006). https://doi.org/10.1103/PhysRevB.73.205410

    Article  Google Scholar 

  24. Zimpel, M.O.A.M.: Temperature-dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in Insb. J. Phys. Chemistry Solids 49, 1179–1185 (1988)

    Article  ADS  Google Scholar 

  25. Howells, S.C., Schlie, L.A.: Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz. Appl Phys Lett 69(4), 550 (1996)

    Article  ADS  Google Scholar 

  26. Dai, X., et al.: Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb. J Appl Phys 109(5), 053104 (2011)

    Article  ADS  Google Scholar 

  27. Tao, J., et al.: Tunable subwavelength terahertz plasmonic stub waveguide filters. IEEE Trans. Nanotechnol. 12(6), 1191–1197 (2013)

    Article  ADS  Google Scholar 

  28. Gao, Y., et al.: Analysis of focal-shift effect in planar metallic nanoslit lenses. Opt Express 20(2), 1320–1329 (2012)

    Article  ADS  Google Scholar 

  29. Dong, J., et al.: Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings. Appl Physics Lett 104(1), 011115 (2014)

    Article  ADS  Google Scholar 

  30. Song, E.Y., et al.: Active directional beaming by mechanical actuation of double-sided plasmonic surface gratings. Opt Lett 38(19), 3827–3829 (2013)

    Article  ADS  Google Scholar 

  31. Lee, S.-Y., Lee, G.-Y., Lee, B.: Plasmonic directional beam switching with tilted nanoslit array surrounded by gratings. J. Lightwave Technol. 34(4), 1368–1372 (2016)

    Article  ADS  Google Scholar 

  32. Jany, B.R., et al.: Energy dependence of nanopillars formation on InSb semiconductor surfaces under gallium FIB and noble gas ions beam irradiation. Appl. Surf. Sci. 327, 86–92 (2015)

    Article  ADS  Google Scholar 

  33. Miyazaki, H.T., Kurokawa, Y.: Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96(9), 097401 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project was funded by State Key Laboratory of Advanced Optical Communication Systems Networks, China (Grant Nos. 2020GZKF006) and the National Science Fund of China (Grant Nos. 61572366) and the Zhejiang Natural Science Foundation (Grant Nos. LQ19F050002). This work is also Fund by the Ningbo Natural Science Foundation (Grant Nos. 2018A610089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiqing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Jiang, Y., Fu, M. et al. Tunable terahertz plasmonic planar lens based on InSb micro-slit array. Opt Rev 28, 484–490 (2021). https://doi.org/10.1007/s10043-021-00682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00682-4

Keywords

Navigation