Skip to main content
Log in

Unequally spaced four levels phase encoding in holographic data storage

  • Special Section: Regular Paper
  • International Workshop on Holography and related technologies (IWH2015), Okinawa, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Holographic data storage system is a candidate for the information recording due to its large storage capacity and high transfer rate. We propose an unequally spaced four levels phase encoding in the holographic data storage system here. Compared with two levels or three levels phase encoding, four levels phase encoding effectively improves the code rate. While more phase levels can further improve code rate, it also puts higher demand for the camera to differentiate the resulting smaller grayscale difference. Unequally spaced quaternary level phases eliminates the ambiguity of pixels with same phase difference relative to reference light compared to equally spaced quaternary levels. Corresponding encoding pattern design with phase pairs as the data element and decoding method were developed. Our encoding improves the code rate up to 0.875, which is 1.75 times of the conventional amplitude method with an error rate of 0.13 % according to our simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heising, W.P.: Methods of file organization for efficient use of IBM RAMAC files. In: IRE-ACM-AIEE '58 (Western) Proceedings of the May 6–8, 1958 western joint computer conference: contrasts in computers, pp. 194–196. ACM, New york (1958)

  2. Parthenopoulos, D.A., Rentzepis, P.M.: Three-dimensional optical storage memory. Sci. 245, 843 (1989)

    Article  ADS  Google Scholar 

  3. Glezer, E.N., Milosavljevic, M., Huang, L., Finlay, R.J., Her, T.-H., Callan, J.P., Mazur, E.: Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023 (1996)

    Article  ADS  Google Scholar 

  4. Gabor, D.: A new microscopic principle. Nature. 161, 777 (1948)

    Article  ADS  Google Scholar 

  5. van Heerden, P.J.: Theory of optical information storage in solids. Appl. Opt. 2, 193 (1963)

    Article  Google Scholar 

  6. Tan, X., Horimai, H.: Collinear technology for holographic versatile disc (HVD) system. Photonics North, pp. 6343 (2006)

  7. Tan, X., Lin, X., Wu, A., Zang, J.: High density collinear holographic data storage system. Front. Optoelectron. 7, 443 (2014)

    Article  Google Scholar 

  8. Horimai, H., Tan, X., Li, J.: Collinear holography. Appl. Opt. 44, 2575 (2005)

    Article  ADS  Google Scholar 

  9. Horimai, H., Tan, X.: Advanced collinear holography. Opt. Rev. 12, 90 (2005)

    Article  Google Scholar 

  10. Horimai, H., Tan, X.: Holographic information storage system: today and future. IEEE. Trans. Magn. 43, 943 (2007)

    Article  ADS  Google Scholar 

  11. King, B.M., Neifeld, M.A.: Sparse modulation coding for increased capacity in volume holographic storage. Appl. Opt. 39, 6681 (2000)

    Article  ADS  Google Scholar 

  12. King, B.M., Burr, G.W., Neifeld, M.A.: Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage. Appl. Opt. 42, 2546 (2003)

    Article  ADS  Google Scholar 

  13. Burr, G.W., Barking, G., Coufal, H.: Gray-scale data pages for digital holographic data storage. Opt. Lett. 23, 1218 (1998)

    Article  ADS  Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J., Cao, L., Gu, H., Tan, X., He, Q., Jin, G.: Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage. Opt. Lett. 37, 936 (2012)

    Article  ADS  Google Scholar 

  16. Berger, G., Dietz, M., Brauckmann, N., Denz, C.: Associative data search in phase-encoded volume holographic storage systems. Appl. Phys. B. 92, 145 (2008)

    Article  ADS  Google Scholar 

  17. John, R., Joseph, J., Singh, K.: Holographic digital data storage using phase-modulated pixels. Opt. Lasers Eng. 43, 183 (2005)

    Article  Google Scholar 

  18. Kogelnik, K.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909 (1969)

    Article  Google Scholar 

  19. Shimura, T., Ichimura, S., Fujimura, R., Kuroda, K., Tan, X., Horimai, H.: Calculation of the pixel spread function with a simple numerical model for the collinear holographic storage system. In: International symposium on optical memory and optical data storage (2005)

  20. Shimura, T., Ichimura, S., Fujimura, R., Kuroda, K., Tan, X., Horimai, H.: Analysis of a collinear holographic storage system: introduction of pixel spread function. Opt. Lett. 31, 1208 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the National Natural Science Foundation of China (Grant No. 61475019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Huang, Y., Lin, X. et al. Unequally spaced four levels phase encoding in holographic data storage. Opt Rev 23, 1004–1009 (2016). https://doi.org/10.1007/s10043-016-0263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0263-1

Keywords

Navigation