Skip to main content
Log in

Radiometry and Radiation Efficiency of Twisted Gaussian Schell-Model Sources

  • GENERAL AND PHYSICAL OPTICS
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Wavefields endowed with the coherence-induced property of optical twist have recently attracted a good deal of theoretical and experimental attention. We present the generalized radiometric theory of fields generated by twisted Gaussian Schell-model sources. The effects introduced by the novel, rotationally symmetric, twist phenomenon in the radiant intensity, generalized radiance, radiant emittance (irradiance), and the radiation efficiency are assessed. The radiance becomes directionally skewed as a result of the twist, whereas the radiant intensity remains axially symmetric. The twist reduces the radiation efficiency and broadens the radiation distribution, in agreement with the notion that the twist decreases the effective coherence. Several special cases, such as quasihomogeneous sources, are analyzed in detail. The radiometric results, which are physically consistent with the superposition models of twisted sources, are demonstrated by illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Mandel and E. Wolf: Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).

    Google Scholar 

  2. A. T. Friberg, ed.: Selected Papers on Coherence and Radiometry, SPIE Milestone Series, Vol. 69 (SPIE Optical Engineering Press, Bellingham, WA, 1993).

  3. S. R. Seshadri: J. Opt. Soc. Am. A 16 (1999) 1373.

    Google Scholar 

  4. R. Simon and N. Mukunda: J. Opt. Soc. Am. A 10 (1993) 95.

    Google Scholar 

  5. R. Simon, K. Sundar and N. Mukunda: J. Opt. Soc. Am. A 10 (1993) 2008.

    Google Scholar 

  6. K. Sundar, R. Simon and N. Mukunda: J. Opt. Soc. Am. A 10 (1993) 2017.

    Google Scholar 

  7. R. Simon and N. Mukunda: J. Opt. Soc. Am. A 15 (1998) 2373.

    Google Scholar 

  8. A. T. Friberg, E. Tervonen and J. Turunen: J. Opt. Soc. Am. A 11 (1994) 1818.

    Google Scholar 

  9. A. T. Friberg, E. Tervonen and J. Turunen: Opt. Commun. 106 (1994) 127.

    Article  Google Scholar 

  10. J. Turunen, E. Tervonen and A. T. Friberg: J. Appl. Phys. 67 (1990) 49.

    Article  Google Scholar 

  11. F. Gori, V. Bagini, M. Santarsiero, F. Frezza, G. Schettini and G. Schirripa Spagnolo: Opt. Rev. 1 (1994) 143.

    Google Scholar 

  12. D. Ambrosini, V. Bagini, F. Gori and M. Santarsiero: J. Mod. Opt. 41 (1994) 1391.

    Google Scholar 

  13. F. Gori, M. Santarsiero, R. Borghi and S. Vicalvi: J. Mod. Opt. 45 (1998) 539.

    Article  Google Scholar 

  14. A. T. Friberg: in International Trends in Optics and Photonics (ICO IV), ed. T. Asakura (Springer-Verlag, Berlin, 1999) p. 3.

    Google Scholar 

  15. S. Ramee and R. Simon: J. Opt. Soc. Am. A 17 (2000) 84.

    Google Scholar 

  16. R. Simon, A. T. Friberg and E. Wolf: JEOS A: Pure Appl. Opt. 5 (1996) 331.

    Article  Google Scholar 

  17. G. Nemes and A. E. Siegman: J. Opt. Soc. Am. A 11 (1994) 1811.

    Google Scholar 

  18. A. T. Friberg, C. Gao, B. Eppich and H. Weber: Proc. SPIE 3110 (1997) 317.

  19. M. J. Bastiaans: in Optics and Optoelectronics: Theory, Devices, and Applications, eds. O. P. Nijhawan, A. K. Gupta, A. K. Musla and K. Singh (Narosa, New Delhi, 1998) Vol. 1, p. 121.

    Google Scholar 

  20. H. Laabs, C. Gao and H. Weber: J. Mod. Opt. 46 (1999) 709.

    Article  Google Scholar 

  21. R. Simon and N. Mukunda: J. Opt. Soc. Am. A 16 (1999) 2465.

    Google Scholar 

  22. W. H. Carter and E. Wolf: J. Opt. Soc. Am. 67 (1977) 785.

    Google Scholar 

  23. A. T. Friberg: Opt. Eng. 21 (1982) 362.

    Google Scholar 

  24. A. Gamliel: Opt. Commun. 60 (1986) 333.

    Article  Google Scholar 

  25. T. Shirai and T. Asakura: J. Mod. Opt. 40 (1993) 1143.

    Google Scholar 

  26. T. Shirai and T. Asakura: J. Mod. Opt. 40 (1993) 2451.

    Google Scholar 

  27. A. Gamliel and A. T. Friberg: J. Opt. Soc. Am. A 8 (1991) 520.

    Google Scholar 

  28. E. W. Marchand and E. Wolf: J. Opt. Soc. Am. 64 (1974) 1219.

    Google Scholar 

  29. E. Wolf: J. Opt. Soc. Am. 68 (1978) 1597.

    Google Scholar 

  30. M. Abramowitz and I. A. Stegun, eds: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965).

    Google Scholar 

  31. E. Wolf and E. Collett: Opt. Commun. 25 (1978) 293.

    Article  Google Scholar 

  32. E. Collett and E. Wolf: J. Opt. Soc. Am. 69 (1979) 942.

    Google Scholar 

  33. A. Walther: J. Opt. Soc. Am. 58 (1968) 1256.

    Google Scholar 

  34. M. J. Bastiaans: in The Wigner Distribution— Theory and Applications in Signal Processing, eds. W. Mecklenbrauker and F. Hlawatsch (Elsevier, Amsterdam, 1997) p. 375.

    Google Scholar 

  35. H. P. Baltes and B. Steinle: Nuovo Cimento B 41 (1977) 428.

    Google Scholar 

  36. A. S. Ostrovsky: Opt. Rev. 3 (1996) 83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari T. Friberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Östlund, P., Friberg, A.T. Radiometry and Radiation Efficiency of Twisted Gaussian Schell-Model Sources. OPT REV 8, 1–8 (2001). https://doi.org/10.1007/s10043-001-0001-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-001-0001-0

Key words

Navigation