Skip to main content

Advertisement

Log in

Integrated hydrological modeling of the No-Name watershed, Medicine Bow Mountains, Wyoming (USA)

Modélisation hydrologique intégrée du bassin versant de No-Name, Montagnes de Medicine Bow, Wyoming (Etats-Unis d’Amérique)

Modelización hidrológica integrada de una cuenca en Medicine Bow Mountains, Wyoming (EE.UU.)

美国怀俄明州Medicine Bow山脉无名流域的综合水文模拟

Modelagem hidrológica integrada da bacia hidrográfica No-Name, Montanhas Medicine Bow, Wyoming (EUA)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Integrated modeling of headwater watersheds in mountain environments is often limited by the lack of hydrological characterization and monitoring data. For the No-Name watershed in the Medicine Bow Mountains in Wyoming (USA), this research integrates regional surface and subsurface hydrological and geophysical measurements to create three-dimensional integrated hydrological models with which interactions between surface water, soil water, and groundwater are elucidated. Data used to build and calibrate the integrated model include a digital elevation model (DEM), stream discharge at the outlet of the watershed, soil-moisture data, weather data, and geophysical surveys including seismic refraction, airborne resistivity, and nuclear magnetic resonance (NMR). Based on interpretation of geophysical measurements, subsurface hydrostratigraphy consists of a top unconsolidated layer, a middle layer of fractured granite and metamorphic bedrock, and a lower protolith. Given that both measurements and interpretations have uncertainty, a sensitivity analysis was carried out to evaluate conceptual model uncertainty, which suggests the following: (1) for predicting stream discharge at the No-Name outlet, the most influential parameters are the Manning coefficient, DEM, hydrostratigraphy and hydraulic conductivity, and land cover. Compared to a lower-resolution DEM, a LiDAR DEM can lead to more accurate predictions of the stream discharge and stream elevation profile. (2) For predicting soil moisture, the most influential parameters are hydrostratigraphy and the associated hydraulic conductivities and porosities. (3) Based on a calibration exercise, the likely values for subsurface hydraulic conductivity at No-Name are ~10–5 m/s (the unconsolidated layer), ~10–6 m/s (fractured bedrock), and ~10–6 m/s or lower (protolith).

Résumé

La modélisation intégrée des bassins versants de tête dans des environnements de montagne est souvent limitée par le manque de caractérisation hydrogéologique et de données d’observation. Pour le bassin versant de No-Name, dans les Montagnes de Medicine Bow, au Wyoming (Etats-Unis d’Amérique), cette recherche intègre des mesures hydrologiques et géophysiques régionales de surface et de subsurface destinées à créer des modèles hydrologiques intégrés tridimensionnels, grâce auxquels les interactions entre l’eau de surface, l’eau du sol et l’eau souterraine sont élucidées. Les données utilisées pour construire et caler le modèle intégré comprennent: un modèle numérique de terrain (MNT), le débit du cours d’eau à l’exutoire du bassin versant, des données sur l’humidité du sol, des données météorologiques, et des levés géophysiques incluant la sismique réfraction, la résistivité aéroportée et la résonance magnétique nucléaire (RMN). D’après l’interprétation des mesures géophysiques, l’hydrostratigraphie de subsurface consiste en une couche supérieure non consolidée, une couche médiane faite d’un socle granitique et métamorphique fracturé et un protolithe inférieur. Etant donné que les mesures et les interprétations sont incertaines, une analyse de sensibilité a été réalisée pour évaluer l’incertitude du modèle conceptuel, laquelle suggère ce qui suit. (1) Pour prédire le débit d’écoulement à l’exutoire de NO-Name, les paramètres les plus influents sont le coefficient de Manning, le MNT, l’hydrostratigraphie, la conductivité hydraulique et l’occupation des sols. Par rapport au MNT de basse résolution, le MNT Lidar peut conduire à des prédictions plus fiables du débit et du profil d’élévation de l’écoulement. (2) Pour prédire l’humidité du sol, les paramètres les plus influents sont l’hydrostratigraphie et les conductivités et porosités hydrauliques associées. (3) Sur la base d’un exercice de calage, les valeurs vraisemblables de conductivité hydraulique de surface à No-Name sont de ~10–5 m/s (couche non consolidée), ~10–6 m/s (socle fracturé), et ~10–6 m/s ou moins (protolithe).

Resumen

El modelado integrado de cuencas hidrográficas de cabecera en ambientes de montaña suele verse limitado por la falta de datos de caracterización hidrológica y de monitoreo. En el Caso de una cuenca situada en las montañas medicine Bow de Wyoming (EE.UU.), esta investigación integra mediciones hidrológicas y geofísicas regionales superficiales y subsuperficiales Para crear modelos hidrológicos integrados tridimensionales con los que dilucidar las interacciones entre el agua superficial, el agua del suelo y las aguas subterráneas. Los datos utilizados Para construir y calibrar el Modelo integrado incluyen: un Modelo digital de elevación (DEM), el caudal de los arroyos a la Salida de la Cuenca, datos sobre la humedad del suelo, datos meteorológicos y estudios geofísicos que incluyen la refracción sísmica, la resistividad aerotransportada y la resonancia magnética nuclear (NMR). Basándose en la interpretación de las mediciones geofísicas, la hidroestratigrafía del subsuelo consiste en una capa superior no consolidada, una capa intermedia de Granito fracturado y roca base metamórfica, y un protolito inferior. Dado que tanto las mediciones Como las interpretaciones Tienen incertidumbre, se llevó a cabo un análisis de sensibilidad Para evaluar la incertidumbre del Modelo conceptual, que sugiere lo siguiente (1) Para predecir la descarga del arroyo en la Salida, los parámetros más influyentes son el coeficiente de Manning, el DEM, la hidroestratigrafía y la conductividad hidráulica, y la cubierta terrestre. En comparación con un DEM de menor resolución, un DEM Lidar puede conducir a predicciones más precisas de la descarga del arroyo y del perfil de elevación del arroyo. (2) Para predecir la humedad del suelo, los parámetros más influyentes son la hidroestratigrafía y las conductividades hidráulicas y porosidades asociadas. (3) sobre la base de un ejercicio de calibración, los valores probables de conductividad hidráulica subsuperficial son ~10–5 m/s (la capa no consolidada), ~10–6 m/s ( roca madre fracturada), y ~10–6 m/s o inferiores (protolito).

摘要

山源区流域的综合建模通常受到水文特征研究和监测数据不足的限制。对于美国怀俄明州Medicine Bow 山脉无名流域,本研究整合了区域表层和地下水文与地球物理测量数据,创建了三维综合水文模型,以阐明地表水、土壤水和地下水之间的相互作用。用于构建和校准综合模型的数据包括:数字高程模型(DEM)、流域出口处的河流流量、土壤湿度数据、气象数据以及包括地震折射、空载电阻率和核磁共振(NMR)在内的地球物理调查数据。基于地球物理测量的解释,地下水层理学划分包括一个顶部非固结层、一个由破碎花岗岩和变质岩床组成的中间层和一个下部原岩。鉴于测量和解释都存在不确定性,进行了敏感性分析以评估概念模型的不确定性,结果提示如下:(1)对于预测无名排泄口的河流流量,最有影响力的参数是曼宁系数、DEM、地层层序和渗透系数以及土地覆盖。与较低分辨率的DEM相比,激光雷达DEM可以更准确地预测河流流量和河流高程剖面。(2)对于预测土壤湿度,最有影响力的参数是地层层序和相关的渗透系数和孔隙度。(3)根据校准结果,无名流域的地下渗透系数的可能值约为10–5 m/s(非固结层)、10–6 m/s(破碎岩床)和10–6 m/s或更低(原岩)。

Resumo

A modelagem integrada de bacias hidrográficas de cabeceiras em ambientes montanhosos é frequentemente limitada pela falta de caracterização hidrológica e dados de monitoramento. Para a bacia hidrográfica No-Name, nas montanhas Medicine Bow em Wyoming (EUA), essa pesquisa integra medidas hidrológicas e geofísicas regionais de superfície e subsuperfície para criar modelos hidrológicos tridimensionais integrados onde as interações entre a água superficial, água do solo e água subterrânea são elucidadas. Os dados utilizados para construir e calibrar o modelo integrado incluem: um modelo digital de elevação (MDE), descarga de fluxo medida na saída da bacia, umidade do solo, dados meteorológicos e levantamentos geofísicos, incluindo método sísmico de refração, resistividade aérea e ressonância magnética nuclear (RMN). Com base na interpretação das medidas geofísica, a hidroestratigrafia de subsuperfície consiste de uma camada superior não consolidada, uma camada intermediária de granito fraturado e rochas metamórficas e um protólito inferior. Uma vez que tanto as medições quanto as interpretações possuem incertezas, uma analise de sensibilidade foi realizada para avaliar as incertezas do modelo conceitual, o que sugere o seguinte: (1) Para prever a descarga de fluxo na saída da bacia, os parâmetros mais influentes são o coeficiente de Manning, MDE, hidroestratigrafia e condutividade hidráulica, e a cobertura da terra. Comparado com um MDE de menor resolução, o MDE feito por Lidar pode levar a precisões mais precisas da descarga e do perfil de elevação do rio. (2) Para prever a umidade do solo, os parâmetros mais influentes são a hidroestratigrafia, além das condutividades hidráulicas e porosidade associadas. (3) Com base em um exercício de calibração, os valores prováveis para a condutividade hidráulica de subsuperfície na bacia hidrográfica No-Name são ~10–5 m/s (camada inconsolidada), ~10–6 m/s (rocha fraturada), e ~10–6 m/s ou inferior (protólito).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ala-aho P, Rossi PM, Isokangas E, Kløve B (2015) Fully integrated surface–subsurface flow modelling of groundwater–lake interaction in an esker aquifer: model verification with stable isotopes and airborne thermal imaging. J Hydrol 522:391–406

    Article  Google Scholar 

  • ArcGIS ESRI (2012) 10.1. ESRI, Redlands

    Google Scholar 

  • Armstrong R (2015) Airborne electromagnetic data in a complex environment: identifying bedrock structure and quaternary deposition (order no. 1601970). PhD Thesis, no. 1730242827, University of Wyoming. http://search.proquest.com/docview/1730242827?accountid=14793. Accessed Sept 2023

  • Bales RC, Molotch NP, Painter TH, Dettinger MD, Rice R, Dozier J (2006) Mountain hydrology of the western United States. Water Resour Res 42(8):W08432

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303

    Article  Google Scholar 

  • Camporese M, Paniconi C, Putti M, Orlandini S (2010) Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resour Res 46(2):W02512

    Article  Google Scholar 

  • Cardenas MB (2008) Surface water-groundwater interface geomorphology leads to scaling of residence times. Geophys Res Lett 35(8):L08402

    Article  Google Scholar 

  • Cho J, Barone VA, Mostaghimi S (2009) Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed. Agric Water Manag 96(1):1–11

    Article  Google Scholar 

  • Chow VT (1959) Open-channel hydraulics. McGraw-Hill, New York, 680 pp

  • Christiansen AV, Auken E, Sørensen K (2006) The transient electromagnetic method. In: Groundwater geophysics: a tool for hydrogeology. Springer Berlin Heidelberg, pp 179–225

  • Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Niu G, Oleson KW, Schlosser CA, Yang ZL (2003) The common land model. Bull Am Meteorol Soc 84(8):1013–1023

    Article  Google Scholar 

  • De Schepper G, Therrien R, Refsgaard JC, Hansen AL (2015) Simulating coupled surface and subsurface water flow in a tile-drained agricultural catchment. J Hydrol 521:374–388

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York, 824 pp

  • Fan Y (2015) Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes. Water Resour Res 51:3052–3069. https://doi.org/10.1002/2015WR017037

    Article  Google Scholar 

  • Fitterman DV, Stewart MT (1986) Transient electromagnetic sounding for groundwater. Geophysics 51(4):995–1005

    Article  Google Scholar 

  • Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33(11):1291–1295

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, 604 pp

  • Frisbee MD, Phillips FM, Campbell AR, Liu F, Sanchez SA (2011) Streamflow generation in a large, alpine watershed in the southern Rocky Mountains of Colorado: is streamflow generation simply the aggregation of hillslope runoff responses? Water Resour Res 47:W06512. https://doi.org/10.1029/2010WR009291

    Article  Google Scholar 

  • Frisbee MD, Tolley DG, Wilson JL (2017) Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow. Water Resour Res 53:2693–2715. https://doi.org/10.1002/2016WR019553

    Article  Google Scholar 

  • Gilbert JM, Maxwell RM (2017) Examining regional groundwater-surface water dynamics using an integrated hydrologic model of the San Joaquin River basin. Hydrol Earth Syst Sci 21(2):923

    Article  Google Scholar 

  • Goderniaux P, Brouyère S, Fowler HJ, Blenkinsop S, Therrien R, Orban P, Dassargues A (2009) Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373(1):122–138

    Article  Google Scholar 

  • Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national land-cover database for the United States. Photogramm Eng Remote Sens 70(7):829–840

    Article  Google Scholar 

  • House AR, Thompson JR, Sorensen JPR, Roberts C, Acreman MC (2016) Modelling groundwater/surface water interaction in a managed riparian chalk valley wetland. Hydrol Process 30(3):447–462

    Article  Google Scholar 

  • Houston RS, Karlstrom KE (1992) Geologic map of Precambrian metasedimentary rocks of the medicine Bow Mountains, Albany and Carbon counties, Wyoming. US Geological Survey, Reston

    Google Scholar 

  • Huntington JL, Niswonger RG (2012) Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: an integrated modeling approach. Water Resour Res 48(11). https://doi.org/10.1029/2012WR012319

  • Johnson TC, Slater LD, Ntarlagiannis D, Day-Lewis FD, Elwaseif M (2012) Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes. Water Resour Res 48(7):W07506

    Article  Google Scholar 

  • Kelleners TJ, Koonce J, Shillito R, Dijkema J, Berli M, Young MH, Massman WJ (2016) Numerical modeling of coupled water flow and heat transport in soil and snow. Soil Sci Soc Am J 80(2):247–263

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling: a free surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29(7):945–958. https://doi.org/10.1016/j.advwatres.2005.08.006

    Article  Google Scholar 

  • Kollet SJ, Maxwell RM (2008) Demonstrating fractal scaling of baseflow residence time distributions using a fully-coupled groundwater and land surface model. Geophys Res Lett 35(7):L07402

    Article  Google Scholar 

  • Liefert DT, Shuman BN, Parsekian AD, Mercer JJ (2018) Why are some rocky mountain lakes ephemeral? Water Resour Res 54(8):5245–5263

    Article  Google Scholar 

  • Lopez SR, Maxwell RM (2016) Identifying urban features from LiDAR for a high resolution urban hydrologic model. J Am Water Resour Assoc 52(3):756–768

    Article  Google Scholar 

  • Markovich KH, Manning AH, Condon LE, McIntosh JC (2019) Mountain-block recharge: a review of current understanding. Water Resour Res 55(11):8278–8304

    Article  Google Scholar 

  • Maxwell RM (2013) A terrain-following grid transform and preconditioner for parallel, largescale, integrated hydrologic modeling. Adv Water Resour 53:109–117

    Article  Google Scholar 

  • Maxwell RM, Condon LE (2016) Connections between groundwater flow and transpiration partitioning. Science 353(6297):377–380

    Article  Google Scholar 

  • Maxwell RM, Condon LE, Kollet SJ (2015) A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci Model Dev 8(3):923–937

    Article  Google Scholar 

  • Meyerhoff SB, Maxwell RM, Revil A, Martin JB, Karaoulis M, Graham WD (2014) Characterization of groundwater and surface water mixing in a semiconfined karst aquifer using time-lapse electrical resistivity tomography. Water Resour Res 50(3):2566–2585

    Article  Google Scholar 

  • Miller MP, Buto SG, Susong DD, Rumsey CA (2016) The importance of base flow in sustaining surface water flow in the upper Colorado River basin. Water Resour Res. 52:3547–3562. https://doi.org/10.1002/2015WR017963

    Article  Google Scholar 

  • Mitchell KE, Lohman D, Houser PR, Wood EF, Schaake JC et al (2004) The multi-institution north American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109:D07S90. https://doi.org/10.1029/2003JD003823

    Article  Google Scholar 

  • National Elevation Dataset (2023) National Elevation Dataset (NED). EROS Data Center, US Geological Survey, Reston

  • NCAR (2013) NCAR-Wyoming Supercomputing Center. http://www2.cisl.ucar.edu/resources/yellowstone. Accessed 2016.8–2018.8

  • Okkonen J, Kløve B (2011) A sequential modelling approach to assess groundwater–surface water resources in a snow dominated region of Finland. J Hydrol 411(1):91–107

    Article  Google Scholar 

  • Partington D, Brunner P, Frei S, Simmons CT, Werner AD, Therrien R, Maier HR, Dandy GC, Fleckenstein JH (2013) Interpreting streamflow generation mechanisms from integrated surface-subsurface flow models of a riparian wetland and catchment. Water Resour Res 49(9):5501–5519

    Article  Google Scholar 

  • Paznekas A, Hayashi M (2016) Groundwater contribution to winter streamflow in the Canadian Rockies. Can Water Resour J 41:484–499

    Article  Google Scholar 

  • Pribulick CE, Foster LM, Bearup LA, Navarre-Sitchler AK, Williams KH, Carroll RW, Maxwell RM (2016) Contrasting the hydrologic response due to land cover and climate change in a mountain headwaters system. Ecohydrology 9(8):1431–1438

    Article  Google Scholar 

  • Ren S, Gragg S, Zhang Y, Carr BJ, Yao G (2018) Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie range, Wyoming. J Hydrol 561:780–795

    Article  Google Scholar 

  • Schaap MG, Leij FJ (1998) Database-related accuracy and uncertainty of pedotransfer functions. Soil Sci 163(10):765–779

    Article  Google Scholar 

  • Schlumberger (2012) Petrel Seismic-to-Evaluation Software, Version 2012. Schlumberger, Houston

  • Seck A, Welty C, Maxwell RM (2015) Spin-up behavior and effects of initial conditions for an integrated hydrologic model. Water Resour Res 51(4):2188–2210

    Article  Google Scholar 

  • Sørensen KI, Auken E (2004) SkyTEM: a new high-resolution helicopter transient electromagnetic system. Explor Geophys 35(3):194–202

    Article  Google Scholar 

  • Thayer D, Parsekian AD, Hyde K, Speckman H, Beverly D, Ewers B et al (2018) Geophysical measurements to determine the hydrologic partitioning of snowmelt on a snowdominated subalpine hillslope. Water Resour Res 54:3788–3808

    Article  Google Scholar 

  • Therrien R, McLarren RG, Sudicky EA, Panday SM (2009) Hydro-GeoSphere, a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport groundwater. Simul. Group, Univ. of Waterloo, Waterloo

    Google Scholar 

  • Thornton JM, Therrien R, Mariéthoz G, Linde N, Brunner P (2022) Simulating fully-integrated hydrological dynamics in complex Alpine headwaters: potential and challenges. Water Resour Res 58(4):e2020WR029390

    Article  Google Scholar 

  • Turnipseed P, Sauer B (2010) Discharge measurements at gaging stations. US Geological Survey Techniques and Methods 3-A8

  • VanderKwaak JE (1999) Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. PhD Thesis, University of Waterloo, Waterloo

  • Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43(7). https://doi.org/10.1029/2006WR005653

  • Voeckler HM, Allen DM, Alila Y (2014) Modeling coupled surface water–groundwater processes in a small mountainous headwater catchment. J Hydrol 517:1089–1106

    Article  Google Scholar 

  • Ward AD, Trimble SW (2004) Environmental hydrology, 2nd edn. Lewis, Boca Raton

    Google Scholar 

  • Williams MW, Knauf M, Caine N, Liu F, Verplanck PL (2006) Geochemistry and source waters of rock glacier outflow. Colorado Front Range. Permafrost Periglacial Proc 17(1):13–33

    Article  Google Scholar 

  • Williams MW, Hood E, Molotch NP, Caine N, Cowie R, Liu F (2015) The ‘teflon basin’ myth: hydrology and hydrochemistry of a seasonally snow-covered catchment. Plant Ecol Divers 8(5–6):639–661. https://doi.org/10.1080/17550874.2015.1123318

    Article  Google Scholar 

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. Groundwater recharge in a desert environment: The Southwestern United States 9:113–137

  • Young KB (1950) A comparative study of mean-section and mid-section methods for computation of discharge measurements. US Geol Surv Open-File Rep 53-277

  • Zou TY, Zhang J (2015) A coupled model for evaluating surface and subsurface FlowMODHMS. In: Advanced Materials Research, vol 1073. Trans Tech, Baech, pp 1716–1719

Download references

Acknowledgements

The authors thank Thijs J. Kelleners, Andrew Fullhart, Kevin David Hyde, and Alan Klatt for providing surface and subsurface data at the No-Name site and helpful conversations. We thank Ron Frost for his geological expertise in interpreting fractured bedrock and the overlying weathered zone. We thank Laura Condon at Colorado School of Mines and Aditi Bhaskar at USGS for providing help with the integrated hydrological model. We thank Ryan Scott Armstrong and W. Steven Holbrook for providing geophysical measurements of the watershed.

Funding

This work was funded by the National Science Foundation (EPS-1208909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianying Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: geophysical data

Appendix: geophysical data

NMR data: A surface NMR dataset was acquired at site W with a GMR (Vista Clara, Mukilteo, WA) using a 45-m circle figure-eight loop with a 20-ms excitation pulse and loop declination 80° east of north. Sixteen stacks were acquired and the data was preprocessed with an 80-Hz bandpass and 500-ms total record length. A multiexponential inversion was performed using GMR1DINV (Vista Clara, Mukilteo, WA) to produce water content and transverse relaxation time (T2*) distribution results (Fig. 6). The maximum depth of investigation (DOI), indicated in Fig. 6, was estimated based on the resolution matrix. The water-table depth at this location was estimated to be 5 m below the ground surface based on the transition from short relaxation times (<100 ms) to longer relaxation times (>100 ms) indicative of the transition from water in unsaturated pores to saturated pores.

Fig. 6
figure 6

Surface Nuclear Magnetic Resonance (NMR) sounding. a Water content as a function of depth. The depth of investigation (DOI) is indicated by the solid line. b The transverse relaxation time (T2*) distribution. Interpreted water-table depth (white-dashed line, b) based on transition from short to longer relaxation times

Seismic refraction data. A total of 13 seismic refraction lines were measured and grouped into northwestern and southeastern grids (Fig. 1b). Example datasets from this campaign shown in Fig. 7 were measured using Geode seismometers (Geometrics, San Jose, CA) with 96 geophones at 2.5-m spacing and 10-m hammer shot spacing. Topography was recorded using a level sight and stadia rod. Dataset 1 was measured on 7 July 2014 and dataset 2 was measured on 23 July 2014. The location of 0 m for each line is indicated on Fig. 1 with a black arrow. The datasets were hand-picked and inverted using DW Tomo (Geogiga Technology Corp., Calgary, AB) with a linear gradient starting model based on the travel-time offset curves and a 5:2 horizontal:vertical smoothing ratio. Picking error was estimated at 0.7 ms and up to eight iterations were allowed, resulting in RMSE residuals ~2.5 ms.

Fig. 7
figure 7

Example seismic refraction tomograms. a Line 1, northwest grid; b Line 2, southeast grid. Isocontours indicate 1,000 and 3,000-m/s p-wave velocities used for interpretation of subsurface structure

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Zhang, Y., Parsekian, A.D. et al. Integrated hydrological modeling of the No-Name watershed, Medicine Bow Mountains, Wyoming (USA). Hydrogeol J 31, 2347–2361 (2023). https://doi.org/10.1007/s10040-023-02712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02712-8

Keywords

Navigation