Skip to main content

Advertisement

Log in

Quantification of normal and sustainable management practices for groundwater resources: example of the arid Najafabad alluvial aquifer in Isfahan Province, Iran

Quantification des pratiques de gestion normale et durable des ressources en eau souterraine: exemple de l’aquifère alluvial aride de Najafabad dans la province d’Isfahan, Iran

Cuantificación de las prácticas usuales y sostenibles de gestión de los recursos hídricos subterráneos: ejemplo del acuífero aluvial árido de Najafabad en la provincia de Isfahan, Irán

地下水资源常规和可持续管理实践的量化:以伊朗Isfahan省Najafabad冲积含水层为例

Quantificação de práticas habituais e sustentáveis de gerenciamento dos recursos hídricos subterrâneos: exemplo do aquífero aluvial árido Najafabad na província de Isfahan, Irã

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Two levels of management are attributed a quantitative metric value for the alluvial Najafabad aquifer, Isfahan Province (Iran). “Sustainable” groundwater originates from the aquifer area itself to meet water demands in the region; however, groundwater originating from both the local aquifer area and adjacent aquifer(s) meets water demand under “normal” management practice. Mean annual levels of management (LOM) for normal and sustainable situations are valued as –0.08 and –0.19, respectively, during the observation period (1993–2016) and documented by depleting groundwater storage (by 58.03 million m3) and declining water tables (by 1.25 m). Sustainable management occurs for 2 years only. LOM values are negative in scenarios with improved water-use efficiency, resulting in long-term water-table drop; however, reductions of groundwater abstraction and cultivated area without improving water-use efficiency can increase the LOM and raise groundwater level in Najafabad aquifer. The LOM range for normal management is 0.03–0.043 in these scenarios (0.014–0.045 for sustainable practices), resulting in water-table rise of 0.36–0.59 m/year. Sustainable management occurs during 50–70% of the scenario period. LOM values in Najafabad aquifer reveal four classes: mismanagement, pseudo-sustainable, pseudo-unsustainable and sustainable. Mismanagement yields negative LOM values for normal and sustainable management and falling water tables, while sustainable management yields positive values and rising water tables. Pseudo-sustainability is evidenced by rising water tables but negative sustainable LOM values due to the volume of groundwater overexploitation being less than the net groundwater inflow. Pseudo-unsustainability shows a water-table drop and a positive sustainable LOM due to the net groundwater outflow.

Résumé

Une valeur métrique quantitative est attribuée à deux niveaux de gestion pour l’aquifère alluvial de Najafabad, dans la province d’Isfahan (Iran). Les eaux souterraines “durables” proviennent de la zone aquifère elle-même pour répondre aux demandes en eau de la région; cependant, les eaux souterraines provenant à la fois de la zone aquifère locale et des aquifères adjacents répondent à la demande en eau dans le cadre d’une pratique de gestion “normale”. Les niveaux moyens annuels de gestion (LOM) pour les situations normales et durables sont évalués à –0.08 et –0.19, respectivement, pendant la période d’observation (1993–2016) et documentés par l’épuisement du stockage des eaux souterraines (de 58.03 millions de m3) et la baisse des nappes phréatiques (de 1.25 m). La gestion durable ne se produit que pendant 2 ans. Les valeurs du LOM sont négatives dans les scénarios où l’efficacité de l’utilisation de l’eau est améliorée, ce qui entraîne une baisse des nappes phréatiques à long terme ; cependant, la réduction des prélèvements d’eau souterraine et des surfaces cultivées sans amélioration de l’efficacité de l’utilisation de l’eau peut augmenter le LOM et faire monter le niveau des nappes phréatiques dans l’aquifère de Najafabad. La plage de LOM pour une gestion normale est de 0.03–0.043 dans ces scénarios (0.014–0.045 pour des pratiques durables), ce qui entraîne une augmentation de la nappe phréatique de 0.36–0.59 m/an. La gestion durable se produit pendant 50–70% de la période du scénario. Les valeurs LOM dans l’aquifère de Najafabad révèlent quatre classes: mauvaise gestion, pseudo-durable, pseudo-nondurable et durable. La mauvaise gestion donne des valeurs LOM négatives pour la gestion normale et durable et des nappes phréatiques en baisse, tandis que la gestion durable donne des valeurs positives et des nappes phréatiques en hausse. La pseudo-durabilité est mise en évidence par des nappes phréatiques en hausse mais des valeurs de LOM durables négatives en raison du volume de surexploitation des eaux souterraines inférieur à l’apport net d’eaux souterraines. La pseudo-nondurabilité montre une baisse des nappes phréatiques et un LOM durable positif en raison de l’écoulement net des eaux souterraines (décharge naturelle).

Resumen

Se ha asignado un valor métrico cuantitativo a dos niveles de gestión del acuífero aluvial de Najafabad, en la provincia de Isfahan (Irán). Las aguas subterráneas “sostenibles” proceden de la propia zona del acuífero para satisfacer la demanda de agua de la región; sin embargo, las aguas subterráneas procedentes tanto de la zona del acuífero local como de acuíferos adyacentes satisfacen la demanda de agua con una práctica de gestión “normal”. Los niveles medios anuales de gestión (LOM) para las situaciones normal y sostenible se valoran en –0.08 y –0.19, respectivamente, durante el período de observación (1993–2016) y se documentan mediante el agotamiento del almacenamiento de aguas subterráneas (en 58.03 millones de m3) y el descenso de los niveles freáticos (en 1.25 m). La gestión sostenible solo se produce durante dos años. Los valores del LOM son negativos en escenarios con una mayor eficiencia en el uso del agua, lo que provoca un descenso del nivel freático a largo plazo; sin embargo, la reducción de la extracción de aguas subterráneas y de la superficie cultivada sin mejorar la eficiencia en el uso del agua puede aumentar el LOM y elevar el nivel de las aguas subterráneas en el acuífero de Najafabad. El intervalo LOM para una gestión normal es de 0.03–0.043 en estos escenarios (0.014–0.045 para prácticas sostenibles), lo que se traduce en un aumento del nivel freático de 0.36–0.59 m/año. La gestión sostenible se produce durante el 50–70% del periodo del escenario. Los valores de LOM en el acuífero de Najafabad revelan cuatro clases: mala gestión, pseudosostenible, pseudoinsostenible y sostenible. La mala gestión arroja valores LOM negativos para la gestión normal y sostenible y niveles freáticos decrecientes, mientras que la gestión sostenible arroja valores positivos y niveles freáticos crecientes. La seudo-sostenibilidad se manifiesta por el aumento de los niveles freáticos, pero con valores negativos de LOM sostenible debido a que el volumen de sobreexplotación de las aguas subterráneas es inferior a la afluencia neta de aguas subterráneas. La seudoinsostenibilidad muestra un descenso del nivel freático y un LOM sostenible positivo debido a la salida neta de aguas subterráneas.

摘要

两级管理进行伊朗Isfahan省Najafabad冲积含水层的定量度量价值。 “可持续”地下水来源于含水层地区,以满足该地区的水需求; 但是,在“常规”管理实践下,源自当地含水层区域和相邻含水层的地下水符合用水需求。 在观测期(1993–2016),常规情况和可持续情况的平均年度管理水平(LOM)分别为–0.08和–0.19,并通过地下水存储消耗(58.03百万m3)和下降的潜水位( 1.25 m)。 可持续管理仅发生了两年。 LOM值在提高用水效率的情况下为负值,导致长期潜水位下降; 但是,在不提高用水利用效率的情况下,地下水开采和耕地的减少可以提高LOM并提高Najafabad含水层的地下水水位。 在这些情况下,常规管理的LOM范围为0.03–0.043(可持续实践情景为0.014–0.045),导致潜水位上升为0.36–0.59 m/年。 可持续管理发生在场景期限的50–70%之内。 Najafabad含水层中的LOM值揭示了四个类别:管理不善,准可持续,准不可持续和可持续性。 管理不善会为常规和可持续管理和下降的潜水位产生负LOM值,而可持续管理会产生正值和较高的水位。 准可持续性可以通过上升的潜水位升高,但由于地下水过度开发的数量小于地下水净流入,因此可持续的LOM值为负。准可持续性显示出由于地下水净流出而导致的潜水位下降和正的可持续LOM值。

Resumo

Dois níveis de gerenciamento são atribuídos a um valor métrico quantitativo para o aquífero aluvial Najafabad, Província de Isfahan (Irã). As águas subterrâneas “sustentáveis” originam-se da própria área do aquífero para atender à demanda de água na região; entretanto, as águas subterrâneas originadas tanto da área do aquífero local quanto do(s) aquífero(s) adjacente(s) atendem à demanda de água sob a prática de gerenciamento “habitual”. Os níveis médios de gerenciamento (NMG) anual para situações habituais e sustentáveis são avaliados em –0.08 e –0.19, respectivamente, durante o período de observação (1993–2016) e documentados pela diminuição do armazenamento de águas subterrâneas (em 58.03 milhões de m3) e dos lençóis freáticos em declínio (em 1.25 m). O gerenciamento sustentável ocorre por apenas 2 anos. Os valores de NMG são negativos em cenários com maior eficiência no uso da água, resultando em queda do nível da água a longo prazo; entretanto, a redução da captação de águas subterrâneas e da área cultivada sem melhorar a eficiência no uso da água pode aumentar o NMG e elevar o nível das águas subterrâneas no aquífero Najafabad. A faixa de NMG para gerenciamento habitual é de 0.03–0.043 nestes cenários (0.014–0.045 para práticas sustentáveis), resultando em um aumento de 0.36–0.59 m/ano na tabela de água. O gerenciamento sustentável ocorre durante 50–70% do período do cenário. Os valores de NMG no aquífero de Najafabad revelam quatro classes: má administração, pseudosustentável, pseudoinsustentável e sustentável. O mau gerenciamento produz valores negativos de NMG para o gerenciamento habitual e sustentável e lençóis freáticos em queda, enquanto o gerenciamento sustentável produz valores positivos e lençóis freáticos em ascensão. Pseudosustentabilidade é evidenciada pela elevação dos lençóis freáticos, mas valores negativos de NMG sustentável devido ao volume de sobre-exploração das águas subterrâneas ser menor do que a entrada líquida de água subterrânea. A pseudossustentabilidade mostra uma queda do lençol freático e um NMG sustentável positivo devido ao fluxo líquido de águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi F, Sohrab F, Abbasi N (2015) Irrigation efficiencies and spatio-temporal variations in Iran. Agricultural Engineering Research Institute, Karaj, Iran, 52 pp

  • Alizadeh A, Kamali GH (2007) The irrigation water requirement of crops in Iran. Imam Reza International University, Tehran

    Google Scholar 

  • Ashraf S, Nazemi A, AghaKouchak A (2021) Anthropogenic drought dominates groundwater depletion in Iran. Sci Rep 11(1):1–10

    Article  Google Scholar 

  • Darzi F, Safavi H, Mamanpush A, Bahraini G (2006) Modeling irrigation return flow from Nekuabad distribution network in Najafabad aquifer. Second conference on Iran Water Resources Management, Isfahan, Iran

    Google Scholar 

  • Dourado-Neto D, van Lier J, Qd MK, Reichardt K, Nielsen DR (2010) General procedure to initialize the cyclic soil water balance by the Thornthwaite and Mather method. Scientia Agricola 67(1):87–95

    Article  Google Scholar 

  • Falkenmark M, Rockström J (2010) Building water resilience in the face of global change: from a blue-only to a green-blue water approach to land-water management. J Water Res Plan Manag 136:606–610. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000118

    Article  Google Scholar 

  • Fathian F, Morid S, Kahya E (2015) Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theor Appl Clim 119(3):443–464

    Article  Google Scholar 

  • Ghazali S (2012) The relation between Parishan Lake water level and adjacent groundwater under groundwater overexploitation. J Agric Econ Res 4(14):121–135

    Google Scholar 

  • Haghighi AT, Kløve B (2017) Design of environmental flow regimes to maintain lakes and wetlands in regions with high seasonal irrigation demand. Ecol Eng 100:120–129

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agricult 1(2):96–99

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Routledge, London

    Google Scholar 

  • Iranian Water Resources Management Company (2016) Data center. https://stuwrm.ir. Accessed January 2023

  • Jafari H, Raeisi E, Zare M, Haghighi AAK (2012) Time series analysis of irrigation return flow in a semi-arid agricultural region, Iran. Arch Agron Soil Sci 58(6):673–689

    Article  Google Scholar 

  • Malmir M, Javadi S, Moridi A, Neshat A, Razdar B (2021) A new combined framework for sustainable development using the DPSIR approach and numerical modeling. Geosci Front 12(4):101169

    Article  Google Scholar 

  • Mao G, Liu J, Han F, Meng Y, Tian Y, Zheng Y, Zheng C (2020) Assessing the interlinkage of green and blue water in an arid catchment in Northwest China. Environ Geochem Health 42(3):933–953

    Article  Google Scholar 

  • Moshir Panahi D, Kalantari Z, Ghajarnia N, Seifollahi-Aghmiuni S, Destouni G (2020) Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period. Sci Reports 10(1):1–9

    Google Scholar 

  • Naderi M (2020) Assessment of water security under climate change for the large watershed of Dorudzan Dam in southern Iran. Hydrogeol J. https://doi.org/10.1007/s10040-020-02159-1

  • Naderi M (2021) Assessing level of water resources management based on water supply and availability concepts. J Cleaner Product 305:127086. https://doi.org/10.1016/j.jclepro.2021.127086

    Article  Google Scholar 

  • Naderi M, Raeisi E (2018) Management strategies of a critical aquifer under the climate change in Jahrum of South-Central Iran. Sustainable Water Resour Manage. https://doi.org/10.1007/s40899-018-0245-5

  • Naghdi S, Bozorg-Haddad O, Khorsandi M, Chu X (2021) Multi-objective optimization for allocation of surface water and groundwater resources. Sci Total Environ 776:146026

    Article  Google Scholar 

  • Naghedifar SM, Ziaei AN, Ansari H (2018) Simulation of irrigation return flow from a Triticale farm under sprinkler and furrow irrigation systems using experimental data: a case study in arid region. Agricult Water Manag 210:185–197

    Article  Google Scholar 

  • Noori R, Maghrebi M, Mirchi A, Tang Q, Bhattarai R, Sadegh M, Noury M, Haghighi AT, Kløve B, Madani K (2021) Anthropogenic depletion of Iran’s aquifers. Proceed Nat Acad Sci 118(25)

  • Nouri A, Saghafian B, Delavar M, Bazargan-Lari MR (2019) Agent-based modeling for evaluation of crop pattern and water management policies. Water Resour Manag 33(11):3707–3720

    Article  Google Scholar 

  • Ratnayaka DD, Brandt MJ, Johnson M (2009) Water supply. Butterworth-Heinemann, Oxford, England

    Google Scholar 

  • Rodrigues DBB, Gupta HV, Mendiondo EM (2014) A blue/green water-based accounting framework for assessment of water security. Water Resour Res 50:7187–7205. https://doi.org/10.1002/2013WR014274

    Article  Google Scholar 

  • Saatsaz M (2013) Groundwater level rising and related hazards in Astaneh-Kouchesfahan plain, Iran. Second International Conference on Environmental Hazards, Tehran, Iran, Civilica, Tehran

  • Safavi HR, Enteshari S (2016) Conjunctive use of surface and ground water resources using the ant system optimization. Agricult Water Manag 173:23–34

    Article  Google Scholar 

  • Safavi HR, Darzi F, Mariño MA (2010) Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour Manag 24(10):1965–1988

    Article  Google Scholar 

  • Sima S, Rosenberg DE, Wurtsbaugh WA, Null SE, Kettenring KM (2021) Managing Lake Urmia, Iran for diverse restoration objectives: moving beyond a uniform target lake level. J Hydrol: Regional Stud 35:100812

    Google Scholar 

  • Sishodia RP, Shukla S, Graham WD, Wani SP, Garg KK (2016) Bi-decadal groundwater level trends in a semi-arid south Indian region: declines, causes and management. J Hydrol: Region Stud 8:43–58

    Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Drexel, Laboratory of Climatology, Centerton, NJ

    Google Scholar 

  • Tork H, Javadi S, Hashemy Shahdany SM, Berndtsson R, Ghordoyee Milan S (2022) Groundwater extraction reduction within an irrigation district by enhancing the surface water distribution. Water 14(10):1610

    Article  Google Scholar 

  • Vanham D, Hoekstra AY, Wada Y, Bouraoui F, de Roo A, Mekonnen MM, van de Bund WJ, Batelaan O, Pavelic P, Bastiaanssen WGM (2018) Physical water scarcity metrics for monitoring progress towards SDG target 6.4. Sci Total Environ 613614:218–232

  • Veettil AV, Mishra AK (2016) Water security assessment using blue and green water footprint concepts. J Hydrol 542:589–602. https://doi.org/10.1016/j.jhydrol.2016.09.032

    Article  Google Scholar 

  • Voldseth RA, Johnson WC, Guntenspergen GR, Gilmanov T, Millett BV (2009) Adaptation of farming practices could buffer effects of climate change on northern prairie wetlands. Wetlands 29:635–647

    Article  Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288

    Article  Google Scholar 

  • Woldeamlak ST, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol J 15:891–901

    Article  Google Scholar 

  • Zare M, Raeisi E, Mirbagheri S (2001) Determination of ground water evaporation using pan evaporometer data in different depth to water table and soil texture conditions. In: New approaches characterizing groundwater flow. Proceedings of the XXXI International Association of Hydrogeologists Congress, Munich, Germany, 10–14 September 2001, pp 1319–1323

  • Zayandab Consulting Engineers Company (2020) Evaluation of water balance in Gavkhuni watershed: report on groundwater resources. Isfahan Water Authority, Isfahan, Iran

    Google Scholar 

Download references

Acknowledgements

The first author is thankful for the support of the Institute for Advanced Studies in Basic Sciences of Zanjan, Iran. Authors are also thankful for the data provided by Zayandab Consulting Engineers Company and Iranian Water Resources Management Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Naderi.

Ethics declarations

Conflict of interest statement

Authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 3018 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, M., Hajiketabi, M. Quantification of normal and sustainable management practices for groundwater resources: example of the arid Najafabad alluvial aquifer in Isfahan Province, Iran. Hydrogeol J 31, 195–218 (2023). https://doi.org/10.1007/s10040-023-02596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02596-8

Keywords

Navigation