Skip to main content
Log in

Identification of the sources of mine drainage in a multiaquifer area: a case study of the abandoned Dashu pyrite mine in southwest China

Identification des sources de drainage minier dans une zone d’aquifères multiples: étude de cas de la mine de pyrite abandonnée de Dashu dans le sud-ouest de la Chine

Identificación de fuentes de drenaje de minas en una zona con múltiples acuíferos: un estudio de caso de la mina de pirita abandonada de Dashu en el suroeste de China

识别多含水层区域中矿坑排水的来源:以中国西南部废弃的大树硫铁矿为例

Identificação das fontes de drenagem de mina em área multiaquífera: um estudo de caso da mina de pirita abandonada de Dashu, no sudoeste da China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Environmental pollution by acid mine drainage (AMD) can have serious consequences, and water is necessary for the production of AMD. Studying the source of mine water is of great significance for revealing the causes of pollution and controlling environmental degradation. Taking the abandoned Dashu pyrite mine in southwest China as an example, hydrogeological and hydrochemical analyses and environmental isotope analysis, combined with principal component analysis (PCA), were used to find the hydraulic relationship between the mine’s decline roadway and the surrounding aquifer, and to identify the source of mine water. Using deuterium-excess and tritium-content values, the recharge sources of the mine water were identified quantitatively, and a conceptual model of the groundwater flow was established, taking into consideration the hydrogeological conditions. Thus, the hydrogeological context associated with the pollution was determined. The results showed that the mine drainage mainly originates from the central groundwater recharge zone of the Quaternary accumulation platform in the northwest section of the mine, and a small part comes from the karst water recharge zone of the Maokou Formation. A quantitative identification method appropriate for multiple aquifers is established, which can provide a reference for the identification of the drainage sources of abandoned mines in similar multiple-aquifer settings, and it could provide important guidance for environmental managers dealing with the remediation of abandoned mine drainage.

Résumé

La pollution de l’environnement par le drainage minier acide (DMA) peut avoir de graves conséquences, et l’eau est nécessaire à la production du DMA. L’étude de la source des eaux minières est d’une grande importance pour révéler les causes de la pollution et contrôler la dégradation de l’environnement. En prenant pour exemple la mine de pyrite abandonnée de Dashu, dans le sud-ouest de la Chine, des analyses hydrogéologiques et hydrochimiques et des analyses isotopiques environnementales, combinées à une analyse en composantes principales (ACP), ont été utilisées pour identifier la relation hydraulique entre la chaussée inclinée de la mine et l’aquifère environnant, et pour déterminer la source de l’eau de la mine. En utilisant les valeurs d’excès de deutérium et de teneur en tritium, les sources de recharge de l’eau de la mine ont été identifiées quantitativement, et un modèle conceptuel de l’écoulement des eaux souterraines a été établi, en considérant les conditions hydrogéologiques. Ainsi, le contexte hydrogéologique associé à la pollution a été défini. Les résultats ont montré que le drainage de la mine provient principalement de la zone centrale de recharge des eaux souterraines de la plate-forme d’accumulation quaternaire dans la section nord-ouest de la mine, et une petite partie provient de la zone de recharge des eaux karstiques de la formation de Maokou. Une méthode d’identification quantitative appropriée pour les aquifères multiples est établie, qui peut servir de référence pour l’identification des sources de drainage des mines abandonnées dans des contextes similaires d’aquifères multiples, et elle pourrait fournir des conseils importants aux gestionnaires de l’environnement qui s’occupent de l’assainissement du drainage des mines abandonnées.

Resumen

La contaminación ambiental por el drenaje ácido de las minas (AMD) puede tener graves consecuencias, y el agua es necesaria para la producción de AMD. Estudiar el origen del agua de las minas es de suma importancia para revelar las causas de la contaminación y controlar la degradación del medio ambiente. Tomando como ejemplo la mina de pirita abandonada de Dashu, en el suroeste de China, se utilizaron análisis hidrogeológicos e hidroquímicos y análisis de isótopos ambientales, combinados con el análisis de componentes principales (PCA), para encontrar la relación hidráulica entre la vía inclinada de la mina y el acuífero circundante, y para identificar la fuente del agua de la mina. Utilizando los valores de exceso de deuterio y de contenido de tritio, se identificaron cuantitativamente las fuentes de recarga del agua en la mina, y se estableció un modelo conceptual del flujo de agua subterránea, teniendo en cuenta las condiciones hidrogeológicas. Así, se determinó el contexto hidrogeológico asociado a la contaminación. Los resultados mostraron que el drenaje de la mina se origina principalmente en la zona central de recarga de aguas subterráneas de la plataforma de acumulación cuaternaria en la sección noroeste de la mina, y una pequeña parte proviene de la zona de recarga de aguas cársticas de la Formación Maokou. Se establece un método de identificación cuantitativa apropiado para múltiples acuíferos, que puede proporcionar una referencia para la identificación de las fuentes de drenaje de las minas abandonadas en entornos similares de múltiples acuíferos, y podría proporcionar una orientación importante para los gestores ambientales que se ocupan de la remediación del drenaje de minas abandonadas.

摘要

酸性矿山排水(AMD)污染的环境污染可能会产生严重的后果,并且水是AMD生产必需使用的。研究矿坑排水的来源对于揭示污染和控制环境退化的原因具有重要意义。以中国西南部废弃的大树硫铁矿为例,使用水文地质、水文化学和环境同位素分析,并使用主要成分分析(PCA)来找到倾斜的矿山公路与周边含水层之间的水力关系,以及识别矿水的来源。在考虑水文地质条件情况下,使用过量氘和氚含量定量确定了矿水的补给来源,并确定了地下水流的概念模型。因此,确定了与污染相关的水文地质环境。结果表明,矿山排水主要起源于矿山西北部第四系堆积台地的中央地下水补给区,一小部分来自茅口组喀斯特水补给区。建立了一种适用于多含水层的定量识别方法,可以为在类似的多含水层环境中识别废弃矿排水来源提供参考,并且可以为环境管理者提供重要的指导,以处理对废弃矿坑排水的修复。

Resumo

A poluição ambiental por drenagem ácida de mina (DAM) pode trazer sérias consequências, e a água é necessária para a produção de DAM. Estudar as fontes da água da mina é de grande importância para revelar as causas da poluição e controlar a degradação do meio ambiente. Usando a mina de pirita abandonada de Dashu, no sudoeste da China como um exemplo, a análise hidrogeológica e hidroquímica e a análise de isótopos ambientais, combinados com uma análise de componentes principais (ACP), foram utilizados para encontrar uma relação hidráulica entre a entrada inclinada da mina e os aquíferos circundantes, e para identificar a fonte da água da mina. Utilizando os valores de excesso de deutério e trítio, as fontes de recarga da água da mina foram identificadas quantitativamente, e um modelo conceitual do fluxo de água subterrânea foi estabelecido, levando em consideração as condições hidrogeológicas. Desta maneira, o contexto hidrogeológico associado com a poluição foi determinado. Os resultados mostraram que a drenagem da mina origina-se majoritariamente pela zona de recarga central da água subterrânea da plataforma de acumulação do Quaternário na porção noroeste da mina, e uma menor parte vem da zona de recarga cárstica da Formação Maokou. Um método de identificação quantitativa apropriado para múltiplos aquíferos foi estabelecido, o que pode servir como referência para a identificação das fontes de drenagem de minas abandonadas em configurações de múltiplos aquíferos similares, e pode servir como um importante guia para gestores ambientais lidando com a remediação de drenagem de minas abandonadas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aubertin M, Bussière B, Pabst T, James M, Mbonimpa M (2016) Review of the reclamation techniques for acid-generating mine wastes upon closure of disposal site. Geo-Chicago 270:343–357

    Google Scholar 

  • Brookfeld AE, Blowes DW, Mayer KU (2006) Integration of field measurements and reactive solute transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment. J Contam Hydrol 88:1–22

    Article  Google Scholar 

  • Campaner VP, Luiz-Silva W, Machado W (2014) Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. An Acad Bras Ciênc 86:539–554

    Article  Google Scholar 

  • Cao Y, Xiong X, Li X, Tang Y, Wang Y (2013) Characteristics and resource potential of sulfur deposits in China. Modern Chem Industry 12:11–16

    Google Scholar 

  • Chen J, Pan G, Wu L, Yang H (2018) Identification of the source of mine water gushes based on environmental isotopes and hydrochemical characteristics. Environ Chem 37(6):1410–1420

    Google Scholar 

  • Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Article  Google Scholar 

  • Equeenuddin SM, Tripathy S, Sahoo PK, Panigrahi MK (2010) Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India. J Geochem Explor 105(3):0–82

    Article  Google Scholar 

  • Galhardi JA, Bonotto DM (2016) Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environ Sci Pollut Res 23:18911–18927

    Article  Google Scholar 

  • Guseva O, Opitz A, Broadhurst JL, Harrison S, Becker M (2021) Characterisation and prediction of acid rock drainage potential in waste rock: value of integrating quantitative mineralogical and textural measurements. Miner Eng 163:106750

    Article  Google Scholar 

  • Han P, Niu G (2010) Discussion on China’s main sulphur deposit areas and their resource potential. Geol Chem Min 32(2):95–95

    Google Scholar 

  • He B, Wang Y, Jiang X (2004) Determination of ancient karst landforms on the top of Maokou limestone. Geol China 1:50–55

    Google Scholar 

  • He M, Zhu C, Diao J (2014) Geological environment control overview of pyrite mine in Luobu area, Xuyong County. J Sichuan Geol 2:183–186

    Google Scholar 

  • Jiao X (2016) Groundwater quality assessment and water resources management: progress in the application of hydrogeochemistry and isotope methods. Acta Geol 90(9):2476–2489

    Google Scholar 

  • Jin J, Chen Y (2012) Assessment of groundwater quality based on principal component analysis method. Int J Civil Struct Eng 2(2):670–675

  • Kawabe N (2017) The significance of the soil environment, aqueous environment and planting trees measure in mine pollution control (in Japanese). MMIJ Earth Sapporo 99:89–90

    Google Scholar 

  • Kefeni K, Msagati TA, Mamba B (2017) Acid mine drainage: prevention, treatment options, and resource recovery: a review. J Clean Prod 151:475–493

    Article  Google Scholar 

  • Khoeurn K, Sakaguchi A, Tomiyama S, Igarashi T (2019) Long-term acid generation and heavy metal leaching from the tailings of Shimokawa mine, Hokkaido, Japan: column study under natural condition. J Geochem Explor 201:1–12

    Article  Google Scholar 

  • Kim DM, Yun ST, Yoon S, Mayer B (2019) Signature of oxygen and sulfur isotopes of sulfate in ground and surface water reflecting enhanced sulfide oxidation in mine areas. Appl Geochem 100:143–151

    Article  Google Scholar 

  • Li Y, Xu C, Wu X (2015) Characteristics and mineralization analysis of pyrite ore in Lianghekou of Xuyong, Sichuan, China. Non-metallic Min Indus Guide 1:46–49

    Google Scholar 

  • Li B, Liu G, Nie Y, Ye Z (2021) Causes and effects of a water spill from the underground pit of the Dashu Pyrite Mine, southern Sichuan Basin, Southwest China. Mine Water Environ 40:864–876

    Article  Google Scholar 

  • Liang W, Wei W, Deng Y (2013) Coal-bearing strata framework and coal accumulation in the Guxu mining area, South Sichuan Coalfield. Geol J Sichuan 03:287–290

    Google Scholar 

  • Lindsay MB, Moncur MC, Bain JG, Jambor JL, Ptacek CJ, Blowes DW (2015) Geochemical and mineralogical aspects of sulfide mine tailings. Appl Geochem 57:157–177

    Article  Google Scholar 

  • Liu J, Zhao Y (1997) Time-space distribution of stable isotopes of atmospheric precipitation in China. Reconnaissance Sci Technol 3:34–39

    Google Scholar 

  • Liu J, Zhao Y (2007) Environmental pollution problems and control measures in the process of exploitation and utilization of pyrite resources. China Mining Industry 16(7):55–57

    Google Scholar 

  • Liu H, Jin G, Li J, Han J, Zhang J, Zhang J, Zhong F, Guo D (2013) Testing method for stable isotope composition of uranium geological samples. World Nuclear Geol Sci 3:174–179

    Google Scholar 

  • Liu K, Qiao X, Li B, Liu J, Wang S, Liu Z (2016) Characteristics of deuterium excess parameters for geothermal water in Beijing. Environ Earth Sci 75(23):1485

    Article  Google Scholar 

  • Mahlknecht J, Steinich B, Leon IND (2004) Groundwater chemistry and mass transfers in the independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environ Geol 45(6):781–795

    Article  Google Scholar 

  • Migaszewski ZM, Gałuszka A, Dołęgowska S (2018) Stable isotope geochemistry of acid mine drainage from the Wiśniówka area (south-central Poland). Appl Geochem 95:45–56

    Article  Google Scholar 

  • Nasir S, Ibrahim E, Arief AT (2016) Design and experimental testing of small-scale acid mine drainage treatment plant. Environ Sci 7:912–918

    Google Scholar 

  • Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16

    Article  Google Scholar 

  • Olias M., Canovas CR, Basallote MD, Macias F, Perez-Lopez R, Moreno Gonzalez R, Millan-Becerro R, Nieto J (2019) Causes and impacts of a mine water spill from an acidic pit lake (Iberian pyrite belt). J Environ Pollut 250(July):127–136.

    Article  Google Scholar 

  • Pabst T, Bussière B, Aubertina M, Molson J (2018) Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: a numerical hydro-geochemical assessment. J Contam Hydrol 214:39–53

    Article  Google Scholar 

  • Pierre Louis AM, Yu H, Shumlas SL, Aken BV, Strongin DR (2015) Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions. Environ Sci Technol 49(13):7701–7708

    Article  Google Scholar 

  • Plante B, Bussiere B, Benzaazoua M (2014) Lab to field scale effects on contaminated neutral drainage prediction from the Tio Mine waste rocks. J Geochem Explor 137:37–47

    Article  Google Scholar 

  • Qi H, Ma C, He Z, Hu X (2018) Research and application progress of hydrogeochemistry and environmental isotope methods in groundwater salinization. Safety Environ Eng 25(4):97–105

    Google Scholar 

  • Ramasamy M, Power C, Mkandawire M (2018) Numerical prediction of the long-term evolution of acid mine drainage at a waste rock pile site remediated with an HDPE lined cover system. J Contam Hydrol 216:10–26

    Article  Google Scholar 

  • Shahhosseini M, Ardejani FD, Amini M, Ebrahimi L (2020) The spatial assessment of acid mine drainage potential within a low-grade ore dump: the role of preferential flow paths. Environ Earth Sci 79(1):1–25

    Article  Google Scholar 

  • Shingo T, Toshifumi I, Carlito BT, Pawit T, Hiroyuki I (2019) Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: a geochemical and isotopic study. J Contam Hydrol 225:103502

    Article  Google Scholar 

  • Singha KR, Goswami AP, Kalamdhad AS, Kalamdhad B, Kumarb B (2020) Surface water quality and health risk assessment of Kameng River (Assam, India). Water Pract Technol 15(4):1190–1201

  • Skierszkan EK, Mayer KU, Weis D, Beckie RD (2016) Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru. Sci Total Environ 550:103–113

    Article  Google Scholar 

  • Sun J, Tang C, Wu P, Strosnider WHJ (2014) Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage: impacts at a SW China coalfield. Sci Total Environ 487(15):123–129

    Article  Google Scholar 

  • Sun J, Kobayashi T, Strosnider WHJ, Wu P (2017) Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters. J Hydrol 551:245–252

    Article  Google Scholar 

  • Sun J, Takahashi Y, Strosnider W, Wu P, Cao X (2019) Tracing and quantifying contributions of end members to karst water at a coalfield in southwest China. Chemosphere 234:777–788

    Article  Google Scholar 

  • Sun R, Zhang L, Wang X, Qu C, Lin N, Xu S, Qiu Y, Jiang F (2020) Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: performance and microbial community analysis. Water Res 185:116230

    Article  Google Scholar 

  • Sun D, Zhang Z, Zhou Y, Cao N, Li D (2021) Study on soil environmental treatment effect of Luobu pyrite mine in Xuyong County. Sichuan Environ 1:174–181

    Google Scholar 

  • Tabelin CB, Sasaki R, Igarashi T, Park I, Tamoto S, Arima T, Ito M, Hiroyoshi N (2017) Simultaneous leaching of arsenite, arsenate, selenite and selenate, and their migration in tunnel-excavated sedimentary rocks: II. kinetic and reactive transport modeling. Chemosphere 188:444–454

    Article  Google Scholar 

  • Teng Y, Zuo R, Wang J, Lin X (2010) Progress in geochemical research on regional groundwater evolution. Adv Water Sci 21(1):127–136

    Google Scholar 

  • Tolonen ET, Sarpola A, Hu T, Rmc J, Lassi U (2014) Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals. Chemosphere 117:419–42

    Article  Google Scholar 

  • Vick SG (2001) Stability aspects of long-term closure for sulphide tailings. Proc. Safe Tailings Dams Constructions, Gaellivare, Sweden, September 2000, 12 pp

  • Wang X, Qiao W, Chen J, Liu X, Yang F (2017) Understanding the burial and migration characteristics of deep geothermal water using hydrogen, oxygen, and inorganic carbon isotopes. Water 10(1):7

    Article  Google Scholar 

  • Wu P, Tang C, Liu C, Pei T, Feng L (2009) Geochemical distribution and removal of As, Fe, Mn and Al in a surface water system affected by acid mine drainage at a coalfield in southwestern China. Environ Geol 57(7):1457–1467

    Article  Google Scholar 

  • Xu R (1994) Discussion on the development mode of pyrite in southern Sichuan. Chem Geol 16(2):105–111

    Google Scholar 

  • Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B (2013) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res 20(1):358–368

    Article  Google Scholar 

  • Yang S (1985) Variation characteristics of pyrite ore bodies in Dashu coal measure in Sichuan and analysis of exploration network degree. Geol Chem Min 32(1):47–52

    Google Scholar 

  • Yin G, Ni S (2001) Evolution of deuterium excess parameter in groundwater. J Min Rock Geochem 20(4):409–411

    Google Scholar 

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. In: Environmental pollution, vol 5. Kluwer, Dordrecht, The Netherlands

  • Zhang Z, Zhou Y, Cao N, Li D (2021) Study on soil environmental treatment effect of Luobu pyrite mine in Xuyong County [J]. Sichuan Environment 1:174–181

    Google Scholar 

  • Zhu G, Wu X, Ge J, Liu F, Zhao W, Wu C (2020) Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM). J Clean Prod 257:120664. https://doi.org/10.1016/j.jclepro.2020.120664

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection free exploration project SKLGP2019Z008, the Sichuan Provincial Department of Science and Technology program focusing on research and development (2020YFS0339), the State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution open fund (GHBK-2020-018), and the State Environmental Protection special fund for support. Our thanks go to the Sichuan Institute of Geological Exploration for the sampling and analysis, which was of great assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 715 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Linfeng, Z., Yang, Z. et al. Identification of the sources of mine drainage in a multiaquifer area: a case study of the abandoned Dashu pyrite mine in southwest China. Hydrogeol J 31, 387–400 (2023). https://doi.org/10.1007/s10040-022-02559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02559-5

Keywords

Navigation