Skip to main content

Advertisement

Log in

Simulation of saltwater intrusion in a poorly karstified coastal aquifer in Lebanon (Eastern Mediterranean)

Simulation de l’intrusion saline dans un aquifère côtier peu karstifié au Liban (Méditerranée orientale)

Simulación de la intrusión de agua salada en un acuífero costero pobremente karstificado en el Líbano (Mediterráneo oriental)

(地中海东部)黎巴嫩未充分岩溶化的沿海含水层中海水入侵的模拟

Simulação da intrusão de água salina em um aquífero costeiro pobremente carstificado no Líbano (Mediterrâneo Oriental)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

To date, there has been no agreement on the best way to simulate saltwater intrusion (SWI) in karst aquifers. An equivalent porous medium (EPM) is usually assumed without justification of its applicability. In this paper, SWI in a poorly karstified aquifer in Lebanon is simulated in various ways and compared to measurements. Time series analysis of rainfall and aquifer response is recommended to decide whether quickflow through conduits can be safely ignored. This aids in justifying the selection of the exemplified EPM model. To examine the improvement of SWI representation when discrete features (DFs) are embedded in the model domain, the results of a coupled discrete-continuum (CDC) approach (a hybrid EPM-DF approach) are compared to the EPM model. The two approaches yielded reasonable patterns of hydraulic head and groundwater salinity, which seem trustworthy enough for management purposes. The CDC model also reproduced some local anomalous chloride patterns, being more adaptable with respect to the measurements. It improved the overall accuracy of salinity predictions at wells and better represented the fresh–brackish water interface. Therefore, the CDC approach can be beneficial in modeling SWI in poorly karstified aquifers, and should be compared with the results of the EPM method to decide whether the differences in the outcome at local scale warrant its (more complicated) application. The simulation utilized the SEAWAT code since it is density dependent and public domain, and it enjoys widespread application. Including DFs necessitated manual handling because the selected code has no built-in option for such features.

Résumé

A ce jour, il n’y a pas eu d’accord sur la meilleure façon de simuler l’intrusion d’eau salée (IES) dans les aquifères karstiques. Un milieu poreux équivalent (MPE) est généralement supposé sans justification de son applicabilité. Dans cet article, IES dans un aquifère peu karstifié au Liban est simulé de différentes manières et comparé aux mesures. Il est recommandé d’effectuer une analyze des séries chronologiques des précipitations et de la réponse de l’aquifère pour décider si un écoulement rapide au sein des conduits peut être négligé en toute sécurité. Cela aide dans la justification de la sélection du modèle MPE donné en exemple. Pour examiner l’amélioration de la représentation de l’IES lorsque des caractéristiques discrètes (CD) sont incorporées dans le domaine du modèle, les résultats d’une approche couplée discrète-continu (CDC) (approche hybride MPE-CD) sont comparés à ceux du modèle MPE. Les deux approches ont fourni des représentations raisonnables de la charge hydraulique et de la salinité des eaux souterraines, qui semblent suffisamment fiables pour des objectifs de gestion. Le modèle CDC a également reproduit certaines anomalies locales en chlorure, étant plus ajustable par rapport aux mesures. Cela a amélioré la précision globale des prédictions de salinité aux puits et a permis de mieux représenter l’interface eau douce–eau saumâtre. Par conséquent, l’approche CDC peut être bénéfique dans la modélisation de l’IES d’aquifères peu karstifiés, et doit être comparé aux résultats de la méthode MPE pour décider si les différences dans les résultats à l’échelle local justifient son application (plus complexe). La simulation a utilisé le code SEAWAT car il dépend de la densité et est disponible dans le domaine public, et il bénéficie d’une application étendue. L’intégration de CD a nécessité une manipulation manuelle car le code sélectionné n’a pas d’options intégrées pour de telles fonctionnalités.

Resumen

Hasta la fecha, no ha habido acuerdo sobre la mejor manera de simular la intrusión de agua salada (SWI) en los acuíferos kársticos. Por lo general, se asume un medio poroso equivalente (EPM) sin justificación de su aplicabilidad. En este trabajo, la SWI en un acuífero pobremente karstificado en el Líbano se simula de varias maneras y se lo compara con mediciones. Se recomienda el análisis de series de tiempo de la lluvia y la respuesta del acuífero para decidir si el flujo rápido a través de los conductos se puede ignorar de manera segura. Esto ayuda a justificar la selección del modelo EPM ejemplificado. Para examinar la mejora de la representación de la SWI cuando las características discretas (DFs) están integradas en el dominio del modelo, los resultados de un enfoque de continuo discreto (CDC) acoplado (un enfoque híbrido EPM-DF) se comparan con el modelo EPM. Los dos enfoques arrojaron patrones razonables de carga hidráulica y de salinidad del agua subterránea, que parecen lo suficientemente confiables para los fines de gestión. El modelo de CDC también reprodujo algunos patrones de cloruro anómalos locales, siendo más adaptable con respecto a las mediciones. Mejoró la precisión general de las predicciones de salinidad en los pozos y representó mejor la interfaz de agua dulce–salobre. Por lo tanto, el enfoque CDC puede ser beneficioso para modelar SWI en acuíferos pobremente karstificados, y debe compararse con los resultados del método EPM para decidir si las diferencias en el resultado a escala local justifican su aplicación (más complicada). La simulación utilizó el código SEAWAT ya que depende de la densidad y es de dominio público, y goza de una amplia aplicación. La inclusión de los DF requiere manejo manual porque el código seleccionado no tiene una opción incorporada para tales características.

摘要

迄今为止,人们一直还没有统一意见认为哪种方法是模拟岩溶含水层海水入侵的最好方法。通常假定为等量孔隙介质,而 不去过多地考虑其适用性。本文中,通过不同方式模拟了黎巴嫩一个未充分岩溶化含水层的海水入侵情况,并与测量的结果进行了对比。建议进行降雨及含水层的响应的时序分析以决定通过管道的快流是否能安全地被忽略。这有助于合理选择例证的等量孔隙介质模型。当离散特点嵌入模型域时,为了检验海水入侵展示的改善情况,一个耦合离散-连续统方法(混合的等量介质-离散特点方法)的结果与等量孔隙介质模型进行了对比。两种方法都出现了水头和地下水含盐度合理的模式,似乎用于管理足够可靠。耦合离散连续统模型还再生出一些局部异常氯化钠模式,在测量结果方面更加适合。它能提高井中含盐度的整体精度,更好地展示了淡水-微咸水界面。因此,耦合离散-连续统方法利于模拟未充分岩溶化含水层海水入侵,应当与等量孔隙介质方法进行比较,以决定局部尺度上结果差异是否能保证其(更复杂)的应用。模拟利用了SEAWAT编码,因为其依靠密度,并且是公共域,受到了广泛的应用。包含离散特点需要人工处理,因为对于这样的特点选择的编码没有内置的选择。

Resumo

Até à data, não há acordo sobre a melhor maneira de simular a intrusão de água salina (IAS) em aquíferos cársticos. Um meio poroso equivalente (MPE) é assumido geralmente sem justificativa de sua aplicação. Neste artigo, a IAS em um aquífero pobremente carstificado no Líbano foi simulada de várias maneiras e comparada às medições. A análise de séries temporais de precipitação e respostas do aquífero é recomendada para decidir se o fluxo rápido através dos condutos pode ser ignorado com segurança. Isso ajuda a justificar a seleção do modelo de MPE exemplificado. Para examinar a melhoria da representação da IAS quando as características discretas (CDs) são incorporadas no domínio do modelo, os resultados de uma abordagem de contínuo-discreto acoplado (CDA) (abordagem híbrida MPE-CD) são comparados ao modelo de MPE. As duas abordagens renderam padrões razoáveis de carga hidráulica e salinidade das águas subterrâneas, os quais parecem ser confiáveis o suficiente para fins de gerenciamento. O modelo de CDA também reproduziu alguns padrões locais anômalos de cloretos, sendo mais adaptável em relação às medições. O modelo melhorou a precisão geral das previsões de salinidade em poços e representou melhor a interface água doce–salobra. Portanto, a abordagem de CDA pode ser benéfica na modelagem da IAS em aquíferos pobremente carstificados, e deve ser comparada com os resultados do método de MPE para decidir se as diferenças no resultado em escala local garantem sua aplicação (mais complicada). A simulação utilizou o código SEAWAT, uma vez que depende de densidade e domínio público, e goza de uma aplicação generalizada. A inclusão de CDs exigiu um manuseio manual, pois o código selecionado não possuía opção interna para tais recursos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abarca E, Carrera J, Sánchez-Vila X, Dentz M (2007) Anisotropic dispersive Henry problem. Adv Water Resour 30(4):913–926. https://doi.org/10.1016/j.advwatres.2006.08.005

    Article  Google Scholar 

  • Abusaada M, Sauter M (2013) Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Groundwater 51(4):641–650. https://doi.org/10.1111/j.1745-6584.2012.01003.x

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Angelini P (1997) Correlation and spectral analysis of two hydrogeological systems in central Italy. Hydrol Sci J 42(3):425–438. https://doi.org/10.1080/02626669709492038

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Pet Eng 146:54–61

    Google Scholar 

  • Archontelis A, Ganoulis J (2015) Comparison between hydrodynamic simulation and available data in a karst coastal aquifer: the case of Almyros Spring, Crete Island, Greece. In: Hydrogeological and environmental investigations in karst systems. EESCI, vol 1, Springer, Heidelberg, Germany, pp 303–311. https://doi.org/10.1007/978-3-642-17435-3_30

  • Arkadan A (2008) Climatic changes in Lebanon, predicting uncertain precipitation events: do climatic cycles exist? In: Zereini F, Hötzl H (eds) Climatic changes and water resources in the Middle East and North Africa, environmental science and engineering. Springer, Berlin, pp 59–74

    Google Scholar 

  • Awad HM (1983) Geomorphology, stratigraphy and hydrogeology of the Doha-Damour area and hinterland. MSc Thesis, American University of Beirut, Lebanon

  • Bachu S (1995) Flow of variable-density formation water in deep sloping aquifers: review of methods of representation with case studies. J Hydrol 164:19–38. https://doi.org/10.1016/0022-1694(94)02578-Y

    Article  Google Scholar 

  • Barlow PM (2003) Ground water in freshwater–saltwater environments of the Atlantic Coast. US Geol Surv Circ 1262

  • Benavente J, Pulido-Bosch A, Mangin A (1985) Application of correlation and spectral procedures to the study of the discharge in a karstic system (eastern Spain). In: Proceedings of Karst Water Resources symposium, Ankara-Antalya, July 1985. IAHS Publ. no. 161, pp 67–75

  • Bense VF, Van Balen RT, De Vries JJ (2003) The impact of faults on the hydrogeological conditions in the Roer Valley Rift System: an overview. Netherlands J Geosci 82(1):41–54

    Article  Google Scholar 

  • Bhuiyan C (2015) Hydrological characterization of geological lineaments: a case study from the Aravalli terrain, India. Hydrogeol J 23:673–686. https://doi.org/10.1007/s10040-015-1239-0

    Article  Google Scholar 

  • Blessent D, Jørgensen P, Therrien R (2014) Comparing discrete fracture and continuum models to predict contaminant transport in fractured porous media. Groundwater 52(1):84–95. https://doi.org/10.1111/gwat.12032

    Article  Google Scholar 

  • Borghi A, Renard P, Jenni S (2012) A pseudo-genetic stochastic model to generate karstic networks. J Hydrol 414–415:516–529. https://doi.org/10.1016/j.jhydrol.2011.11.032

  • Bredehoeft JD (1997) Fault permeability near Yuca Mountain. Water Resour Res 33(11):2459–2463

    Article  Google Scholar 

  • Celico F, Petrella E, Celico P (2006) Hydrogeological behaviour of some fault zones in a carbonate aquifer of southern Italy: an experimentally based model. Terra Nova 18:308–313. https://doi.org/10.1111/j.1365-3121.2006.00694.x

    Article  Google Scholar 

  • Charmonman S (1965) A solution of the pattern of fresh-water flow in an unconfined coastal aquifer. J Geophys Res 70:2813–2819. https://doi.org/10.1029/JZ070i012p02813

    Article  Google Scholar 

  • Chen Z, Goldscheider N (2014) Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen-Gottesacker, Alps. J Hydrol 514:41–52. https://doi.org/10.1016/j.jhydrol.2014.04.005

    Article  Google Scholar 

  • Cooper HH (1964) Sea water in the coastal aquifers. US Geol Surv Water Suppl Pap 1613-C

  • Dafny E, Burg A, Gvirtzman H (2010) Effects of karst and geological structure on groundwater flow: the case of Yarqon-Taninim aquifer, Israel. J Hydrol 389:260–275. https://doi.org/10.1016/j.jhydrol.2010.05.038

    Article  Google Scholar 

  • Dausman AM, Langevin CD (2005) Movement of the saltwater interface in the Surficial Aquifer System in response to hydrologic stresses and water management practices, Broward County, Florida. US Geol Surv Sci Invest Rep 2004-5256

  • De Filippis G, Foglia L, Giudici M, Mehl S, Margiotta S, Luigi Negri S (2016) Seawater intrusion in karstic, coastal aquifers: current challenges and future scenarios in the Taranto area (southern Italy). Sci Total Environ 573:1340–1351. https://doi.org/10.1016/j.scitotenv.2016.07.005

    Article  Google Scholar 

  • Dentoni M, Deidda R, Paniconi C, Qahman K, Lecca G (2015) A simulation/optimization study to assess seawater intrusion management strategies for the Gaza strip coastal aquifer (Palestine). Hydrogeol J 23:249–264. https://doi.org/10.1007/s10040-014-1214-1

    Article  Google Scholar 

  • Diersch HJG (2014) Finite element modeling of flow, mass and heat transport in porous and fractured media, 1st edn. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-642-38739-5

  • Doherty J (1994) PEST Model-independent parameter estimation. User’s manual, Watermark, Brisbane, Australia

  • Dokou Z, Karatzas G (2012) Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach. Hydrol Sci J 57(5):985–999. https://doi.org/10.1080/02626667.2012.690070

    Article  Google Scholar 

  • El Yaouti F, El Mandour A, Khattach D, Kaufmann O (2008) Modelling groundwater flow and advective contaminant transport in the Bou-Areg unconfined aquifer (NE Morocco). J Hydro-Environ Res 2(3):192–209. https://doi.org/10.1016/j.jher.2008.08.003

  • FAO (1973) Project de development hydro-agricole du sud du Liban: thermometrie aeroportee par infra-rouge [South-Lebanon hydro-agricultural development project: infra-red aeronautical thermometry]. FAO, Beirut, Lebanon

  • Fattahi MH, Talebbeydokhti N, Shamsai A (2010) Application of double continuum porosity equivalent method to investigate the karst problem of Salman Farsi Dam in Iran. The National Conference on Water Crisis Management, Azad University, Iran, March 2010

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK

    Book  Google Scholar 

  • Fu T, Chen H, Wang K (2016) Structure and water storage capacity of a small karst aquifer based on stream discharge in southwest China. J Hydrol 534:50–62. https://doi.org/10.1016/j.jhydrol.2015.12.042

    Article  Google Scholar 

  • Geofizika (1965) Report on geophysical investigations in the southern coastal zone, Yugoslavia. Geophyzika, Sofia, Bulgaria

  • Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the north coast limestone aquifer system of Puerto Rico. Hydrogeol J 20:1441–1461. https://doi.org/10.1007/s10040-012-0897-4

    Article  Google Scholar 

  • Gopinath S, Srinivasamoorthy K, Saravanan K, Suma CS, Prakash R, Senthilnathan D, Chandrasekaran N, Srinivas Y, Sarma VS (2016) Modeling saline water intrusion in Nagapattinam coastal aquifers, Tamilnadu, India. Model Earth Syst Environ 2:2. https://doi.org/10.1007/s40808-015-0058-6

    Article  Google Scholar 

  • Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. US Geol Surv Open File Rep 01-434

  • Hamada GM, Almajed AA, Okasha TM, Algathe AA (2013) Uncertainty analysis of Archie’s parameters determination techniques in carbonate reservoirs. J Petrol Explor Prod Technol 3:1–10. https://doi.org/10.1007/s13202-012-0042-x

    Article  Google Scholar 

  • Jemcov I, Petric M (2009) Measured precipitation vs. effective infiltration and their influence on the assessment of karst systems based on results of the time series analysis. J Hydrol 379:304–314. https://doi.org/10.1016/j.jhydrol.2009.10.016

    Article  Google Scholar 

  • Kavouri KP, Karatzas GP, Plagnes V (2017) A coupled groundwater-flow-modelling and vulnerability-mapping methodology for karstic terrain management. Hydrogeol J. https://doi.org/10.1007/s10040-017-1548-6

  • Khadra WM (2003) Hydrogeology of the Damour-Upper Sannine-Maameltain Aquifer. MSc Thesis, American University of Beirut, Lebanon

  • Khadra WM, Stuyfzand PJ (2014) Separating baseline conditions from anthropogenic impacts: example of the Damour coastal aquifer (Lebanon). Hydrol Sci J 59:1872–1893. https://doi.org/10.1080/02626667.2013.841912

    Article  Google Scholar 

  • Khadra WM, Stuyfzand PJ (2016) Mass balancing to define major hydrogeochemical processes in salinizing dolomitic limestone aquifers: example from Eastern Mediterranean (Lebanon). In: Werner AD (ed) Proc. 24th Salt Water Intrusion Meeting and the 4th Asia-Pacific Coastal Aquifer Management Meeting, Cairns, Australia, July 2016, pp 110–116

  • Khadra WM, Stuyfzand PJ, van Breukelen BM (2017) Hydrochemical effects of saltwater intrusion in a limestone and dolomitic limestone aquifer in Lebanon. Appl Geochem 79:36–51. https://doi.org/10.1016/j.apgeochem.2017.02.005

    Article  Google Scholar 

  • Kihm JH, Kim JM, Song SH, Lee GS (2007) Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer. J Hydrol 335:1–14. https://doi.org/10.1016/j.jhydrol.2006.09.031

    Article  Google Scholar 

  • Kopsiaftis G, Mantoglou A, Giannoulopoulos P (2009) Variable density coastal aquifer models with application to an aquifer on Thira Island. Desalination 237:65–80. https://doi.org/10.1016/j.desal.2007.12.023

    Article  Google Scholar 

  • Kourgialas NN, Dokou Z, Karatzas GP (2016) Saltwater intrusion in an irrigated agricultural area: combining density-dependent modeling and geophysical methods. Environ Earth Sci 75:15. https://doi.org/10.1007/s12665-015-4856-y

    Article  Google Scholar 

  • Kovačič G (2010) Hydrogeological study of the Malenščica karst spring (SW Slovenia) by means of a time series analysis. Acta Carsolog 39(2):201–215

    Google Scholar 

  • Kovács A (2003) Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modeling approach. PhD Thesis, Université de Neuchâtel, Switzerland

  • Kovács A, Sauter M (2007) Modelling karst hydrodynamics. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. International Contribution to Hydrogeology, IAH, vol 26. Taylor and Francis, London, pp 201–222

    Google Scholar 

  • Lafare AEA, Peach DW, Hughes AG (2016) Use of seasonal trend decomposition to understand groundwater behaviour in the Permo-Triassic sandstone aquifer, Eden Valley, UK. Hydrogeol J 24:141–158. https://doi.org/10.1007/s10040-015-1309-3

    Article  Google Scholar 

  • Langevin CD (2003) Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida. Groundwater 41(6):758–771. https://doi.org/10.1111/j.1745-6584.2003.tb02417.x

    Article  Google Scholar 

  • Langevin CD, Guo W (2006) MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport. Groundwater 44(3):339–351. https://doi.org/10.1111/j.1745-6584.2005.00156.x

    Article  Google Scholar 

  • Langevin CD, Shoemaker WB, Guo W (2003) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: documentation of the SEAWAT-2000 version with the variable-density flow process (VDF) and the integrated MT3DMS Transport Process (IMT). US Geol Surv Open-File Rep 03-426

  • Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205:217–231. https://doi.org/10.1016/S0022-1694(97)00155-8

    Article  Google Scholar 

  • Lee JY, Lee KK (2000) Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. J Hydrol 229:190–201. https://doi.org/10.1016/S0022-1694(00)00158-X

    Article  Google Scholar 

  • Maihemuti B, Ghasemizadeh R, Yu X, Padilla I, Alshawabkeh A (2015) Simulation of regional karst aquifer system and assessment of groundwater resources in Manatí-Vega Baja. Puerto Rico J Water Resour Prot 7:909–922. https://doi.org/10.4236/jwarp.2015.712075

    Article  Google Scholar 

  • Mangin A (1994) Karst hydrogeology. In: Groundwater ecology. Academic, San Diego, CA, pp 43–67

  • Masciopinto C (2013) Management of aquifer recharge in Lebanon by removing seawater intrusion from coastal aquifers. J Environ Manag 130:306–312. https://doi.org/10.1016/j.jenvman.2013.08.021

    Article  Google Scholar 

  • Mayer A, May W, Lukkarila C, Diehl J (2007) Estimation of fault-zone conductance by calibration of a regional groundwater flow model: Desert Hot Springs, California. Hydrogeol J 15:1093. https://doi.org/10.1007/s10040-007-0158-0

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geological Survey Techniques of Water Resources Investigations, book 6, chap A1, USGS, Reston, VA

  • Meisler H (1989) The occurrence and geochemistry of salty ground water in the Northern Atlantic Coastal Plain. US Geol Surv Prof Pap 1404-D

  • Monti J, Misut P, Busciolano R (2009) Simulation of variable-density ground-water flow and saltwater intrusion beneath Manhasset Neck, Nassau County, New York, 1905–2005. US Geol Surv Sci Invest Rep 2008-5166

  • Mooi E, Sarstedt M (2011) A concise guide to market research: the process, data, and methods using IBM SPSS statistics. Springer, Berlin

    Book  Google Scholar 

  • Mulligan AE, Langevin C, Post VEA (2011) Tidal boundary conditions in SEAWAT. Ground Water 49(6):866–879. https://doi.org/10.1111/j.1745-6584.2010.00788.x

    Article  Google Scholar 

  • Neukum C, Song J, Köhler HJ, Hennings S, Azzam R (2015) Groundwater flow modeling in a karst area, Blau Valley, Germany. In: Andreo et al (eds) Hydrogeological and environmental investigations in karst systems. Environ. Earth Sci. 1, Springer, Heidelberg, Germany, pp 323–329

  • Nocchi M, Salleolini M (2013) A 3D density-dependent model for assessment and optimization of water management policy in a coastal carbonate aquifer exploited for water supply and fish farming. J Hydrol 492:200–218. https://doi.org/10.1016/j.jhydrol.2013.03.048

    Article  Google Scholar 

  • O’Leary DW, Friedman JD, Pohn HA (1976) Linear, lineation, lineation: some proposed new standards for old terms. Bull Geol Soc Am 87:1463–1469

    Article  Google Scholar 

  • Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89. https://doi.org/10.1016/0022-1694(94)02648-U

    Article  Google Scholar 

  • Padilla A, Pulido-Bosch A, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Groundwater 32(2):267–277. https://doi.org/10.1111/j.1745-6584.1994.tb00641.x

    Article  Google Scholar 

  • Panagopoulos G (2012) Application of MODFLOW for simulating groundwater flow in the Trifilia karst aquifer, Greece. Environ Earth Sci 67(7):1877–1871. https://doi.org/10.1007/s12665-012-1630-2

    Article  Google Scholar 

  • Panagopoulos G, Lambrakis N (2006) The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). J Hydrol 329:368–376. https://doi.org/10.1016/j.jhydrol.2006.02.023

    Article  Google Scholar 

  • Papadopoulou MP, Varouchakis EA, Karatzas GP (2010) Terrain discontinuity effects in the regional flow of a complex karstified aquifer. Environ Modeling Assess 15(5):319–328. https://doi.org/10.1007/s10666-009-9207-5

    Article  Google Scholar 

  • Pardo-Igύzquiza E, Durán JJ, Robledo-Ardilaet PA (2015) A Three-Dimensional Karst Aquifer Model: The Sierra de Las Nieves Case (Málaga, Spain). In: Hydrogeological and environmental investigations in karst systems. Environ. Earth Sci. 1, Springer, Heidelberg, Germany, pp 271–276

  • PCI Geomatics (2013) http://www.pcigeomatics.com. Accessed 4 February 2018

  • Polemio M, Romanazzi A (2014) Hydrogeological modeling for sustainable groundwater management under climate change effects for a karstic coastal aquifer (southern Italy). 23rd SWIM, Husum, Germany

  • Post VE (2005) Fresh and saline groundwater interaction in coastal aquifers: is our technology ready for the problems ahead? Hydrogeol J 13:120–123. https://doi.org/10.1007/s10040-004-0417-2

    Article  Google Scholar 

  • Prinos ST, Wacker MA, Cunningham KJ, Fitterman DV (2014) Origins and delineation of saltwater intrusion in the Biscayne aquifer and changes in the distribution of saltwater in Miami-Dade County, Florida. US Geol Surv Sci Invest Rep 2014-5025

  • Quinn JJ, Tomasko D, Kuiper JA (2006) Modeling complex flow in a karst aquifer. Sediment Geol 184(3–4):343–351. https://doi.org/10.1016/j.sedgeo.2005.11.009

    Article  Google Scholar 

  • Reimann T, Giese M, Geyer T, Liedl R, Maréchal J-C, Shoemaker WB (2014) Representation of water abstraction from a karst conduit with numerical discrete continuum models. Hydrol Earth System Sci 18:227–241. https://doi.org/10.5194/hess-18-227-2014

    Article  Google Scholar 

  • Romanazzi A, Gentile F, Polemio M (2015) Modelling and management of a Mediterranean karstic coastal aquifer under the effects of seawater intrusion and climate change. Environ Earth Sci 74:115–128. https://doi.org/10.1007/s12665-015-4423-6

    Article  Google Scholar 

  • Russo SL, Amanzio G, Ghione R, De Maio M (2015) Recession hydrographs and time series analysis of springs monitoring data: application on porous and shallow aquifers in mountain areas (Aosta Valley). Environ Earth Sci 73:7415–7434. https://doi.org/10.1007/s12665-014-3916-z

    Article  Google Scholar 

  • Saller SP, Ronayne MJ, Long AJ (2013) Comparison of a karst groundwater model with and without discrete conduit flow. Hydrogeol J 21:1555–1566. https://doi.org/10.1007/s10040-013-1036-6

    Article  Google Scholar 

  • Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst aquifer using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276:137–158. https://doi.org/10.1016/S0022-1694(03)00064-7

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Statist 6(2):461–464

    Article  Google Scholar 

  • Schwartz F, Zhang H (2003) Fundamentals of ground water. Wiley, New York

    Google Scholar 

  • Sebben ML, Werner AD, Graf T (2015) Seawater intrusion in fractured coastal aquifers: a preliminary numerical investigation using a fractured Henry problem. Adv Water Resour 85:93–108. https://doi.org/10.1016/j.advwatres.2015.09.013

    Article  Google Scholar 

  • Shoemaker WB, Edwards KM (2003) Potential for saltwater intrusion into the Lower Tamiami Aquifer near Bonita Springs, southwestern Florida. US Geolol Surv Water Resour Invest Rep 03-4262

  • Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swain ED (2008) Documentation of a conduit flow process (CFP) for MODFLOW-2005. US Geol Surv Techniques Methods 6-A24

  • Soupios P, Kourgialas N, Dokou Z, Karatzas G, Panagopoulos G, Vafidis A, Manoutsoglou E (2015) Modeling saltwater intrusion at an agricultural coastal area using geophysical methods and the FEFLOW model. In: Engineering geology for society and territory, vol 3. Springer, Cham, Switzerland, pp 249–252

  • Spiessl SM, Prommer H, Licha T, Sauter M, Zheng C (2007) A process-based reactive hybrid transport model for coupled discrete conduit–continuum systems. J Hydrol 347:23–34. https://doi.org/10.1016/j.jhydrol.2007.08.026

    Article  Google Scholar 

  • Steiakakis E, Vavadakis D, Kritsotakis M, Voudouris K, Anagnostopoulou C (2016) Drought impacts on the fresh water potential of a karst aquifer in Crete. Greece Environ Earth Sci 75:507. https://doi.org/10.1007/s12665-016-5509-5

    Article  Google Scholar 

  • Teutsch G (1993) An extended double-porosity concept as a practical modeling approach for a karstified terrain. Hydrogeological Processes in Karst Terranes (Proceedings of the Antalya Symposium and Field Seminar, October 1990), IAHS, Wallingford, UK, pp 281–292

  • Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) HydroGeoSphere: a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, Waterloo, ON

  • Trommer JT (1993) Description and monitoring of the saltwater-fresh water transition zone in aquifers along the west-central coast of Florida. US Geol Surv Water Resour Invest Rep 93-4120

  • Wang X, Jardani A, Jourde H, Lonergan L, Cosgrove J, Gosselin O, Massonnat G (2016) Characterisation of the transmissivity field of a fractured and karstic aquifer, southern France. Adv Water Resour 87:106–121. https://doi.org/10.1016/j.advwatres.2015.10.014

    Article  Google Scholar 

  • Xu Z (2016) Data analysis and numerical modeling of seawater intrusion through conduit network in a coastal karst aquifer. PhD Thesis, Florida State University, Tallahassee, FL

  • Yassine Hajj Chehadeh AHM (2015) Tectonic evolution and seismic hazard analysis of the Damour-Beit Ed Dine Fault System. MSc Thesis, American University of Beirut, Lebanon

  • Zhao J, Lin J, Wu J, Yang Y, Wu J (2016) Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City in northern China. Environ Earth Sci 75:805. https://doi.org/10.1007/s12665-016-5606-5

    Article  Google Scholar 

  • Zheng C, Wang P (1999) MT3Dms: a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground-water systems. University of Alabama, Tuscaloosa, AL

    Google Scholar 

  • Zheng C, Bennett GD (2002) Applied contaminant transport modeling, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

Dr. Vincent Post is acknowledged for his time to evaluate the merits of the first draft of this manuscript and provide useful suggestions. The reviews of Prof. Dr. Adrian Werner, Prof. Dr. Theo Olsthoorn, and two anonymous reviewers contributed to substantial improvements that focused the outcome of this work. We are also grateful to agricultural engineer Mr. Khaled Aoun for his aid in installing a multi-set monitoring system in the vicinity of Damour (Lebanon), and to the Mechref Village Company for helping us to collect necessary water level data over several years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wisam M. Khadra.

Electronic supplementary material

ESM 1

(PDF 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadra, W.M., Stuyfzand, P.J. Simulation of saltwater intrusion in a poorly karstified coastal aquifer in Lebanon (Eastern Mediterranean). Hydrogeol J 26, 1839–1856 (2018). https://doi.org/10.1007/s10040-018-1752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1752-z

Keywords

Navigation