Skip to main content
Log in

Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

Evaporation à partir d’un sol dénudé à différentes profondeurs de la nappe phréatique à partir d’expérimentation in situ sur le Plateau d’Ordos, Chine

Evaporación desde suelo desnudo con diferentes profundidades de la capa freática en base a un experimento in situ en la meseta de Ordos, China

根据中国鄂尔多斯高原现场试验进行的不同水位深度的裸地蒸发研 究

Evaporação do solo nu com diferentes níveis freáticos baseado em um experimento in-situ no Planalto de Ordos, China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

Résumé

Les processus dynamiques d’évaporation du sol sont complexes et sont associés à une multitude de facteurs tels que les influences météorologiques, la profondeur de la nappe phréatique, et les matériaux de la zone non saturée. Pour étudier l’évaporation du sol à partir d’une zone non saturée homogène, une expérience in-situ a été réalisée sur le plateau d’Ordos en Chine. Deux profondeurs de nappe phréatique ont été choisies pour étudier le mouvement de l’eau dans la zone non saturée et l’évaporation du sol. A partir des résultats expérimentaux et calculés, il en ressort que (1) l’évaporation du sol nu est. un état limité atmosphérique pour le cas où la profondeur de la nappe phréatique est. proche de la hauteur capillaire; (2) l’évaporation du sol nu est. un état de stockage d’eau limité dans le cas où la profondeur de la nappe phréatique est. au-delà de la hauteur capillaire; (3) les eaux souterraines ont peu d’effet sur l’évaporation de la surface du sol lorsque la profondeur de la nappe phréatique est. plus grande que la hauteur capillaire; et (4) l’évaporation du sol est. plus grande au cours de la nuit que pendant la journée; et (5) on trouve une zone d’interaction liquide-vapeur à une profondeur de près de 20 cm, dans laquelle il existe un flux de vapeur vers le bas lors des jours ensoleillés, conduisant à une tendance à l’augmentation de l’humidité du sol entre 09: 00 et 17: 00; la valeur maximale est. atteinte à midi. Les résultats de cette étude sont utiles pour mieux comprendre les processus dynamiques de l’évaporation du sol dans les zones arides.

Resumen

Los procesos dinámicos de evaporación desde el suelo son complejos y están relacionados con una multitud de factores tales como las influencias meteorológicas, la profundidad de la capa freática y los materiales en la zona no saturada. Para investigar la evaporación del suelo de una zona homogénea no saturada, se realizó un experimento in situ en la meseta de Ordos de China. Se eligieron dos profundidades de la capa freática para explorar el movimiento del agua en la zona no saturada y en la evaporación desde el terreno. En base a los resultados experimentales y calculados, se demostró que (1) la evaporación desde el suelo desnudo es una etapa limitada por la atmósfera para el caso de que la profundidad de la capa freática sea próxima a la altura capilar; (2) la evaporación de suelo desnudo es una etapa limitada al almacenamiento de agua para el caso de que la profundidad de la capa freática esté más allá de la altura capilar; (3) el agua subterránea tiene poco efecto en la evaporación de la superficie del suelo cuando la profundidad del agua es mayor que la altura capilar; y (4) la evaporación del terreno es mayor durante la noche que durante el día; y (5) se encuentra una zona de interacción líquido-vapor a casi 20 cm de profundidad, en la que existe un flujo de vapor descendente en días soleados, lo que lleva a una tendencia creciente a la humedad del suelo entre las 09:00 y las 17:00; el valor máximo se alcanza al mediodía. Los resultados de esta investigación son útiles para comprender mejor los procesos dinámicos de evaporación del suelo en áreas áridas.

摘要

地面蒸发的动态过程非常复杂,与众多因素有关,诸如气象影响、水位深度以及非饱和带的物质。为了研究均质非饱和带的地面蒸发情况,在中国鄂尔多斯高原进行了现场试验。选择了两个水位深度探索非饱和带中水的运移情况以及地面蒸发情况。根据试验和计算结果,揭示:(1)在水位深度接近毛细高度的情况下,裸地的蒸发是大气限定阶段;(2)在水位深度在毛细高度之下情况下,裸地的蒸发是储水限制阶段;(3)当水的深度大于毛细高度时,地下水对地表蒸发几乎没有影响;(4)地面蒸发夜间大于白天;(5)发现在差不多20cm深度的地方存在气液相互作用带,在此相互作用带晴天时存在着向下的水汽通量,致使09:00至17:00时土壤水分呈增加的趋势;在中午达到最大值。本研究的结果对于进一步了解干旱地区地面蒸发的动态过程非常有用。

Resumo

Os processos dinâmicos de evaporação do solo são complexos e estão relacionados a uma grande variedade de fatores, como influências meteorológicas, altura do nível freático e materiais na zona insaturada. Para investigar a evaporação do solo de uma zona homogênea insaturada, um experimento in situ foi realizado no Planalto de Ordos da China. Duas alturas de nível freático foram escolhidas para explorar o movimento da água na zona insaturada e evaporação do solo. Com base nos resultados experimentais e calculados, foi revelado que (1) a evaporação do solo nu é um estágio atmosférico limitado para o caso de altura do nível freático perto da altura capilar; (2) a evaporação do solo nu é um estágio de armazenamento de água limitado para o caso de altura do nível freático além da altura capilar; (3) a água subterrânea tem pouco efeito na evaporação da superfície do solo quando a altura do nível é maior que a altura capilar; e (4) a evaporação do solo é maior durante a noite do que durante o dia; e (5) uma área de interação líquido-vapor com quase 20 cm de profundidade, em que existe um fluxo de vapor descendente em dias de sol, levando a uma tendência crescente de umidade do solo entre as 09:00 e as 17:00; O valor máximo é atingido no meio-dia. Os resultados desta investigação são úteis para compreender melhor os processos dinâmicos de evaporação do solo em áreas áridas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Assouline S, Tyler SW, Selker JS, Lunati I, Higgins CW, Parlange MB (2013) Evaporation from a shallow water table: diurnal dynamics of water and heat at the surface of drying sand. Water Resour Res 49(7):4022–4034

    Article  Google Scholar 

  • Bittelli M, Ventura F, Campbell GS, Snyder RL, Gallegati F, Pisa PR (2008) Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. J Hydrol 362(3):191–205

    Article  Google Scholar 

  • Boulet G, Braud I, Vauclin M (1997) Study of the mechanisms of evaporation under arid conditions using a detailed model of the soil–atmosphere continuum: application to the EFEDA I experiment. J Hydrol 193(1–4):114–141

    Article  Google Scholar 

  • Chen WP, Hou ZN, Wu LS, Liang YC, Wei CZ, Yang JS (2011) Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agric Water Manag 97(12):2001–2008

    Article  Google Scholar 

  • Deol P, Heitman J, Amoozegar A, Ren T, Horton R (2012) Quantifying nonisothermal subsurface soil water evaporation. Water Resour Res 48(11):11503

    Article  Google Scholar 

  • Genuchten MTV (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(44):892–898

    Article  Google Scholar 

  • Goss K-U, Michael M (2007) Estimation of water transport based on in situ measurements of relative humidity and temperature in a dry Tanzanian soil. Water Resour Res 43(43):160–163

    Google Scholar 

  • Gran M, Carrera J, Massana J, Saaltink MW, Olivella S, Ayora C, Ioret L (2011) Dynamics of water vapor flux and water separation processes during evaporation from a salty dry soil. J Hydrol 396(3–4):215–220

    Article  Google Scholar 

  • Han JB, Zhou ZF, Fu ZM, Wang JW (2014) Evaluating the impact of nonisothermal flow on vadose zone processes in presence of a water table. Soil Sci 179(2):57–67

    Article  Google Scholar 

  • Hillel D (2012) Soil and water: physical principles and processes. Elsevier, Amsterdam

  • Jiang J, Zhao L, Zhai Z (2016) Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone. Front Earth Sci 10(3):513–526

    Article  Google Scholar 

  • Lai J, Ren L (2007) Assessing the size dependency of measured hydraulic conductivity using double-ring infiltrometers and numerical simulation. Soil Sci Soc Am J 71(6):1667

    Article  Google Scholar 

  • Lehmann P, Assouline S, Or D (2008) Characteristic lengths affecting evaporative drying of porous media. Phys Rev E Statistic Nonlinear Soft Matter Phys 77:056309

    Article  Google Scholar 

  • Li X, Jin M, Huang J, Yuan J (2015) The soil–water flow system beneath a cotton field in arid north-west China, serviced by mulched drip irrigation using brackish water. Hydrogeol J 23(1):35–46

    Article  Google Scholar 

  • Milly PCD (1982) Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model. Water Resour Res 18(3):489–498

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  • Noborio K, Mcinnes KJ, Heilman JL (1996) Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: II. field evaluation. Soil Sci Soc Am 60(4):1010–1021

    Article  Google Scholar 

  • O’Brien R, Keller CK, Strobridge DM (2004) Plant-cover effects on hydrology and pedogenesis in a sandy vadose zone. Geoderma 118(1–2):63–76

    Article  Google Scholar 

  • Saito H, Šimůnek J (2009) Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils. J Hydrol 373(3–4):545–561

  • Saito H, Simunek J, Scanlon BR, Reedy RC (2006) Numerical analysis of coupled water, vapor and heat transport in the vadose zone using HYDRUS. Vadose Zone J 5(2):784–800

    Article  Google Scholar 

  • Salvucci GD (1997) Soil and moisture independent estimation of stage-two evaporation from potential evaporation and albedo or surface temperature. Water Resour Res 33(1):111–122

    Article  Google Scholar 

  • Scanlon BR, Milly PCD (1994) Water and heat fluxes in desert soils: 2. numerical simulations. Water Resour Res 30(3):721–734

    Article  Google Scholar 

  • Selim T, Bouksila F, Berndtsson R, Persson M (2013) Soil water and salinity distribution under different treatments of drip irrigation. Soil Sci Soc Am J 77(4):1144–1156

    Article  Google Scholar 

  • Shimojimaa E, Yoshioka R, Tamagawa I (1996) Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation. J Hydrol 178(1–4):109–136

    Article  Google Scholar 

  • Shokri N, Salvucci GD (2011) Evaporation from porous media in the presence of a water table. Vadose Zone J 10(4):1309–1318

    Article  Google Scholar 

  • Smits KM, Ngo VV, Cihan A, Sakaki T, Illangasekare TH (2012) An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions. Water Resour Res 48(12):12526

    Article  Google Scholar 

  • Vanderborght J, T Fetzer, K Mosthaf, KM Smits, Helmig R (2017) Heat and water transport in soils and across the soil-atmosphere interface: 1. theory and different model concepts. Water Resour Res 53(2):1057–1079

  • Wang W, Li J, Feng X, Chen X, Yao K (2011a) Evolution of stream-aquifer hydrologic connectedness during pumping: experiment. J Hydrol 402(3–4):401–414

    Article  Google Scholar 

  • Wang W, Li Y, Yang F, Hou L, Zhao G, Li J (2011b) Experimental and numerical study of coupled flow and heat transport. Water Manag 164(10):533–547

    Google Scholar 

  • Wang W, Li J, Wang W, Chen X, Cheng D, Jia J (2014) Estimating streambed parameters for a disconnected river. Hydrol Process 28(10):3627–3641

    Article  Google Scholar 

  • Wang W, Zhang Z, Yeh TCJ, Qiao G, Wang W, Duan L, Huang S-Y, Wen J-C (2017) Flow dynamics in vadose zones with and without vegetation in an arid region. Adv Water Resour 101:68–79

  • Xing X, Ma X, Shi W (2015) Daytime and nighttime groundwater contributions to soils with different surface conditions. Hydrogeol J 23(8):1–11

    Article  Google Scholar 

  • Yeh PJF, Eltahir EAB (2005) Representation of water table dynamics in a land surface scheme, part I: model development. J Clim 18(12):1861–1880

    Article  Google Scholar 

  • Zha Y, Yang J, Shi L, Song X (2013) Simulating one-dimensional unsaturated flow in heterogeneous soils with water content-based Richards equation. Vadose Zone J 12(2):1–13

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 41230314, U1603243) and Shaanxi Science and Technology Research and Development Project (2014 K15-01-02). The analysis was also partially supported by the program for Changjiang Scholars and Innovative Research Team of the Chinese Ministry of Education (IRT0811). The first author is grateful to the Fundamental Research Funds for the Central Universities (310829175006) and Chinese Scholarship Council (Project number: 201606560014) for providing an opportunity to be a Visiting Research Student at the University of Arizona, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Wang.

Additional information

Published in the special issue “Groundwater sustainability in fast-developing China”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, W., Wang, Z. et al. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China. Hydrogeol J 26, 1683–1691 (2018). https://doi.org/10.1007/s10040-018-1751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1751-0

Keywords

Navigation